14,417 research outputs found

    Strong and Electromagnetic Decays of Two New Lambdac∗Lambda_c^* Baryons

    Full text link
    Two recently discovered excited charm baryons are studied within the framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new baryons which lie 308 \MeV and 340 \MeV above the Λc\Lambda_c as I=0I=0 members of a P-wave spin doublet. Differential and total decay rates for their double pion transitions down to the Λc\Lambda_c ground state are calculated. Estimates for their radiative decay rates are also discussed. We find that the experimentally determined characteristics of the Λc∗\Lambda_c^* baryons may be simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request, CALT-68-191

    Strong Decays of Strange Charmed P-Wave Mesons

    Get PDF
    Goldstone boson decays of P-wave Ds∗∗D_s^{**} mesons are studied within the framework of Heavy Hadron Chiral Perturbation Theory. We first analyze the simplest single kaon decays of these strange charmed mesons. We derive a model independent prediction for the width of Ds2D_{s2} and use experimental information on Ds1D_{s1} to constrain the S-wave contribution to D10D_1^0 decay. Single and double pion decay modes are then discussed and shown to be significantly restricted by isospin conservation. We conclude that the pion channels may offer the best hope for detecting one strange member of an otherwise invisible P-wave flavor multiplet.Comment: 16 pages, 2 updated figures not included but available upon request, CALT-68-1902. (Revised estimates for error on Ds2D_{s2} width and for isospin violating neutral pion decay of Ds1â€ČD'_{s1}.

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m2^2. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of ∌\sim94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Conductance fluctuations at the integer quantum Hall plateau transition

    Full text link
    We study numerically conductance fluctuations near the integer quantum Hall effect plateau transition. The system is presumed to be in a mesoscopic regime, with phase coherence length comparable to the system size. We focus on a two-terminal conductance G for square samples, considering both periodic and open boundary conditions transverse to the current. At the plateau transition, G is broadly distributed, with a distribution function close to uniform on the interval between zero and one in units of e^2/h. Our results are consistent with a recent experiment by Cobden and Kogan on a mesoscopic quantum Hall effect sample.Comment: minor changes, 5 pages LaTex, 7 postscript figures included using epsf; to be published Phys. Rev. B 55 (1997

    Mean-field model of the ferromagnetic ordering in the superconducting phase of ErNi_2B_2C

    Full text link
    A mean-field model explaining most of the details in the magnetic phase diagram of ErNi_2B_2C is presented. The low-temperature magnetic properties are found to be dominated by the appearance of long-period commensurate structures. The stable structure at low temperatures and zero field is found to have a period of 40 layers along the a direction, and upon cooling it undergoes a first-order transition at T_C = 2.3 K to a different 40-layered structure having a net ferromagnetic component of about 0.4 mu_B/Er. The neutron-diffraction patterns predicted by the two 40-layered structures, above and below T_C, are in agreement with the observations of Choi et al.Comment: 4 pages, 3 figures (Revtex4

    Deformed Algebras from Inverse Schwinger Method

    Full text link
    We consider a problem which may be viewed as an inverse one to the Schwinger realization of Lie algebra, and suggest a procedure of deforming the so-obtained algebra. We illustrate the method through a few simple examples extending Schwinger's su(1,1)su(1,1) construction. As results, various q-deformed algebras are (re-)produced as well as their undeformed counterparts. Some extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late

    Cosmological gravitino problem confronts electroweak physics

    Full text link
    A generic feature of gauge-mediated supersymmetry breaking models is that the gravitino is the lightest supersymmetric particle (LSP). In order not to overclose the universe, the gravitino LSP should be light enough (~ 1 keV), or appropriately heavy (~ 1 GeV). We study further constraints on the mass of the gravitino imposed by electroweak experiments, i.e., muon g-2 measurements, electroweak precision measurements, and direct searches for supersymmetric particles at LEP2. We find that the heavy gravitino is strongly disfavored from the lower mass bound on the next-to-LSP. The sufficiently light gravitino, on the other hand, has rather sizable allowed regions in the model parameter space.Comment: 11 pages, 8 figures, version to appear in PR

    Depletion of density of states near Fermi energy induced by disorder and electron correlation in alloys

    Full text link
    We have performed high resolution photoemission study of substitutionally disordered alloys Cu-Pt, Cu-Pd, Cu-Ni, and Pd-Pt. The ratios between alloy spectra and pure metal spectra are found to have dips at the Fermi level when the residual resistivity is high and when rather strong repulsive electron-electron interaction is expected. This is in accordance with Altshuler and Aronov's model which predicts depletion of density of states at the Fermi level when both disorder and electron correlation are present.Comment: 1 tex file and 4 ps file
    • 

    corecore