9,625 research outputs found

    Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation

    Get PDF
    We investigate the properties of relativistic rr-modes of slowly rotating neutron stars by using a relativistic version of the Cowling approximation. In our formalism, we take into account the influence of the Coriolis like force on the stellar oscillations, but ignore the effects of the centrifugal like force. For three neutron star models, we calculated the fundamental rr-modes with l′=m=2l'=m=2 and 3. We found that the oscillation frequency σˉ\bar\sigma of the fundamental rr-mode is in a good approximation given by σˉ≈κ0Ω\bar\sigma\approx \kappa_0 \Omega, where σˉ\bar\sigma is defined in the corotating frame at the spatial infinity, and Ω\Omega is the angular frequency of rotation of the star. The proportional coefficient κ0\kappa_0 is only weakly dependent on Ω\Omega, but it strongly depends on the relativistic parameter GM/c2RGM/c^2R, where MM and RR are the mass and the radius of the star. All the fundamental rr-modes with l′=ml'=m computed in this study are discrete modes with distinct regular eigenfunctions, and they all fall in the continuous part of the frequency spectrum associated with Kojima's equation (Kojima 1998). These relativistic rr-modes are obtained by including the effects of rotation higher than the first order of Ω\Omega so that the buoyant force plays a role, the situation of which is quite similar to that for the Newtonian rr-modes.Comment: 22 pages, 8 figures, accepted for publication in Ap

    Momentum-Resolved Ultrafast Electron Dynamics in Superconducting Bi2Sr2CaCu2O8+delta

    Full text link
    The non-equilibrium state of the high-Tc superconductor Bi2Sr2CaCu2O8+delta and its ultrafast dynamics have been investigated by femtosecond time- and angle-resolved photoemission spectroscopy well below the critical temperature. We probe optically excited quasiparticles at different electron momenta along the Fermi surface and detect metastable quasiparticles near the antinode. Their decay through e-e scattering is blocked by a phase space restricted to the nodal region. The lack of momentum dependence in the decay rates is in agreement with relaxation dominated by Cooper pair recombination in a boson bottleneck limit

    r-modes in Relativistic Superfluid Stars

    Full text link
    We discuss the modal properties of the rr-modes of relativistic superfluid neutron stars, taking account of the entrainment effects between superfluids. In this paper, the neutron stars are assumed to be filled with neutron and proton superfluids and the strength of the entrainment effects between the superfluids are represented by a single parameter η\eta. We find that the basic properties of the rr-modes in a relativistic superfluid star are very similar to those found for a Newtonian superfluid star. The rr-modes of a relativistic superfluid star are split into two families, ordinary fluid-like rr-modes (ror^o-mode) and superfluid-like rr-modes (rsr^s-mode). The two superfluids counter-move for the rsr^s-modes, while they co-move for the ror^o-modes. For the ror^o-modes, the quantity κ≡σ/Ω+m\kappa\equiv\sigma/\Omega+m is almost independent of the entrainment parameter η\eta, where mm and σ\sigma are the azimuthal wave number and the oscillation frequency observed by an inertial observer at spatial infinity, respectively. For the rsr^s-modes, on the other hand, κ\kappa almost linearly increases with increasing η\eta. It is also found that the radiation driven instability due to the rsr^s-modes is much weaker than that of the ror^o-modes because the matter current associated with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review

    Super Schrodinger algebra in AdS/CFT

    Full text link
    We discuss (extended) super Schrodinger algebras obtained as subalgebras of the superconformal algebra psu(2,2|4). The Schrodinger algebra with two spatial dimensions can be embedded into so(4,2). In the superconformal case the embedded algebra may be enhanced to the so-called super Schrodinger algebra. In fact, we find an extended super Schrodinger subalgebra of psu(2,2|4). It contains 24 supercharges (i.e., 3/4 of the original supersymmetries) and the generators of so(6), as well as the generators of the original Schrodinger algebra. In particular, the 24 supercharges come from 16 rigid supersymmetries and half of 16 superconformal ones. Moreover, this superalgebra contains a smaller super Schrodinger subalgebra, which is a supersymmetric extension of the original Schrodinger algebra and so(6) by eight supercharges (half of 16 rigid supersymmetries). It is still a subalgebra even if there are no so(6) generators. We also discuss super Schrodinger subalgebras of the superconformal algebras, osp(8|4) and osp(8^*|4).Comment: 19pp; references added and title changed. version to appear in J. Math. Phy

    Hyperfine interaction and magnetoresistance in organic semiconductors

    Full text link
    We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interaction, previously suggested by others to explain magnetic field effects in organics, is examined. Whereas this model can explain a few key aspects of the experimental data, we, however, uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.Comment: 10 pages, 7 figures, 1 tabl

    Dense Molecular Gas In A Young Cluster Around MWC 1080 -- Rule Of The Massive Star

    Full text link
    We present CS J=2→1J = 2 \to 1, 13^{13}CO J=1→0J = 1 \to 0, and C18^{18}O J=1→0J = 1 \to 0, observations with the 10-element Berkeley Illinois Maryland Association (BIMA) Array toward the young cluster around the Be star MWC 1080. These observations reveal a biconical outflow cavity with size ∼\sim 0.3 and 0.05 pc for the semimajor and semiminor axis and ∼\sim 45\arcdeg position angle. These transitions trace the dense gas, which is likely the swept-up gas of the outflow cavity, rather than the remaining natal gas or the outflow gas. The gas is clumpy; thirty-two clumps are identified. The identified clumps are approximately gravitationally bound and consistent with a standard isothermal sphere density, which suggests that they are likely collapsing protostellar cores. The gas kinematics suggests that there exists velocity gradients implying effects from the inclination of the cavity and MWC 1080. The kinematics of dense gas has also been affected by either outflows or stellar winds from MWC 1080, and lower-mass clumps are possibly under stronger effects from MWC 1080 than higher-mass clumps. In addition, low-mass cluster members tend to be formed in the denser and more turbulent cores, compared to isolated low-mass star-forming cores. This results from contributions of nearby forming massive stars, such as outflows or stellar winds. Therefore, we conclude that in clusters like the MWC 1080 system, effects from massive stars dominate the star-forming environment in both the kinematics and dynamics of the natal cloud and the formation of low-mass cluster members. This study provides insights into the effects of MWC 1080 on its natal cloud, and suggests a different low-mass star forming environment in clusters compared to isolated star formation.Comment: 42 pages, 5 tables, and 13 figures, accepted for publication in Ap

    Scanning tunneling spectroscopic studies of the pairing state of cuprate superconductors

    Get PDF
    Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes

    R-modes of neutron stars with a solid crust

    Get PDF
    We investigate the properties of rr-mode oscillations of a slowly rotating neutron star with a solid crust, by taking account of the effects of the Coriolis force. For the modal analysis we employ three-component neutron star models that are composed of a fluid core, a solid crust and a surface fluid ocean. For the three-component models, we find that there exist two kinds of rr-modes, that is, those confined in the surface fluid ocean and those confined in the fluid core, which are most important for the rr-mode instability. The rr-modes do not have any appreciable amplitudes in the solid crust if rotation rate of the star is sufficiently small. We find that the core rr-modes are strongly affected by mode coupling with the crustal torsional (toroidal) modes and lose their simple properties of the eigenfunction and eigenfrequency as functions of the angular rotation velocity Ω\Omega. This indicates that the extrapolation formula, which is obtained in the limit of Ω→0\Omega\to 0, cannot be used to examine the rr-mode instability of rapidly rotating neutron stars with a solid crust unless the effects of mode coupling with the crustal torsional modes are correctly taken into account.Comment: 10 pages, 3 figures, revised version accepted for publication in the Ap

    Crustal Oscillations of Slowly Rotating Relativistic Stars

    Full text link
    We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.Comment: 15 page
    • …
    corecore