51 research outputs found

    Effect of supplemental Ca2+ on NaCl-stressed castor plants (Ricinus communis L.)

    Get PDF
    Greenhouse experiments were conducted to assess the effects of supplemental Ca2+ in salinised soil on germination and plant growth response of castor plant (Ricinus communis L. Var. Avani-31, Euphorbiaceae). NaCl amounting to 390 g was thoroughly mixed with soil of seven lots, of 100 kg each, to give electrical conductivity of 4.1 dS m–1. Further, Ca(NO3)2 × 4H20 to the quantity of 97.5, 195, 292.5, 390, 487.5, and 585 g was separately mixed with soil of six lots to give 1:0.25, 1:0.50, 1:0.75, 1:1, 1:1.25, and 1:1.50 Na+/Ca2+ ratios, respectively. The soil of the seventh lot contained only NaCl and its Na+/Ca2+ ratio was 1:0. Soil without addition of NaCl and Ca (NO3)2 × 4H20 served as control, with a 0:0 Na+/Ca2+ ratio. Salinity significantly retarded seed germination and plant growth, but the deleterious effects of NaCl on seed germination were ameliorated and plant growth was restored with Ca2+ supply at the critical level (1:0.25 Na+/Ca2+ ratio) to salinised soil. Supply of Ca2+ above the critical level further retarded seed germination and plant growth due to the increased soil salinity. Salt stress reduced N, P, K+ and Ca2+ content in plant tissues, but these nutrients were restored by addition of Ca2+ at the critical level to saline soil. In contrast, Na+ content in plant tissues significantly increased in response to salinity, but significantly decreased with increasing Ca2+ supply to saline soil. The results are discussed in terms of the beneficial effects of Ca2+ supply on the plant growth of Ricinus communis grown under saline conditions

    Measuring uptake of micronutrient and heavy metals in plants: problem and solutions

    No full text

    Fertigation maximizes growth and root tuber yield of cassava

    No full text

    Optimizing root yield of cassava under fertigation and the masked effect of atmospheric temperature

    No full text
    Published online: 17 May 2020BACKGROUND Fertigation is a rare and an expensive method of fertilizer application to cassava, and hence there is a need to optimize its efficiency for profitability. This study's objective was to optimize root yield of cassava through fertigation using a logistic model. RESULTS The field treatments were six fertigation concentrations against three cassava varieties, selected according to their maturity period. The logistic model predicted 52%, 116% and 281% benefit of fertigation for the varieties Mweru, Kampolombo and Nalumino, respectively. Furthermore, only half of the amount of fertilizer applied for Mweru was required to achieve twice the root yield of Kampolombo. During the experiment, an unknown importance of atmospheric temperature to cassava and its relationship to fertigation was observed. An elevation of 3.7 °C in atmospheric temperature led to 226%, 364% and 265% increase in root yield of Mweru, Kampolombo and Nalumino, respectively. Conversely, shoot biomass and root yield declined when the average atmospheric temperatures dropped by 3.6 °C. However, the cold temperatures affected the short‐growth‐duration (Mweru) and medium‐growth‐duration (Kampolombo) varieties earlier, 22 days after the drop, than the long‐growth‐duration variety (Nalumino) – 50 days after the drop. CONCLUSION Fertigation induced resilience of the shoot biomass production to cold which was most pronounced in the root yield of Mweru in response to the highest fertigation concentration. Thus, while fertigation improved cassava's resilience to cold, it only did so effectively for short‐growth‐duration variety, Mweru. Also, enhanced performance of cassava under increased atmospheric temperature indicated its importance as a climate‐smart crop
    corecore