197 research outputs found

    Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects

    Full text link
    We present results on both the intensity and phase-dynamics of the transient non-linear optical response of a single quantum dot (SQD). The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond time scale is dominated by biexciton effects. In particular, for the cross-polarized excitation case a biexciton bound state is found. In this latter case, mean-field results are shown to give a poor description of the non-linear optical signal at small times. By properly treating exciton-exciton effects in a SQD, coherent oscillations in the FWM signal are clearly demonstrated. These oscillations, with a period corresponding to the inverse of the biexciton binding energy, are correlated with the phase dynamics of the system's polarization giving clear signatures of non-Markovian effects in the ultrafast regime.Comment: 10 pages, 3 figure

    Experimental imaging and atomistic modeling of electron and hole quasiparticle wave functions in InAs/GaAs quantum dots

    Get PDF
    We present experimental magnetotunneling results and atomistic pseudopotential calculations of quasiparticle electron and hole wave functions of self-assembled InAs/GaAs quantum dots. The combination of a predictive theory along with the experimental results allows us to gain direct insight into the quantum states. We monitor the effects of (i) correlations, (ii) atomistic symmetry and (iii) piezoelectricity on the confined carriers and (iv) observe a peculiar charging sequence of holes that violates the Aufbau principle.Comment: Submitted to Physical Review B. A version of this paper with figures can be found at http://www.sst.nrel.gov/nano_pub/mts_preprint.pd

    Reducing decoherence of the confined exciton state in a quantum dot by pulse-sequence control

    Full text link
    We study the phonon-induced dephasing of the exciton state in a quantum dot excited by a sequence of ultra-short pulses. We show that the multiple-pulse control leads to a considerable improvement of the coherence of the optically excited state. For a fixed control time window, the optimized pulsed control often leads to a higher degree of coherence than the control by a smooth single Gaussian pulse. The reduction of dephasing is considerable already for 2-3 pulses.Comment: Final version (moderate changes

    Electron microscopic and optical investigations of the indium distribution GaAs capped InxGa1-xAs islands

    Get PDF
    Results from a structural and optical analysis of buried InxGa1-xAs islands carried out after the process of GaAs overgrowth are presented. It is found that during the growth process, the indium concentration profile changes and the thickness of the wetting layer emanating from a Stranski-Krastanow growth mode grows significantly. Quantum dots are formed due to strong gradients in the indium concentration, which is demonstrated by photoluminescence and excitation spectroscopy of the buried InxGa1-xAs islands. (C) 1997 American Institute of Physics

    Full configuration interaction approach to the few-electron problem in artificial atoms

    Full text link
    We present a new high-performance configuration interaction code optimally designed for the calculation of the lowest energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a single-particle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted and correlation becomes dominant. Comparison with previous Quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.Comment: RevTeX 4.0, 18 pages, 6 tables, 9 postscript b/w figures. Final version with new material. Section 6 on the excitation spectrum has been added. Some material has been moved to two appendices, which appear in the EPAPS web depository in the published versio

    Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures

    Get PDF
    The optical properties of CdSe nanostructures grown by migration-enhanced epitaxy of CdSe on ZnSe are studied by time-, energy-, and temperature-dependent photoluminescence and excitation spectroscopy, as well as by polarization-dependent four-wave mixing and two-photon absorption experiments. The nanostructures consist of a coherently strained Zn1−xCdxSe/ZnSe quantum well with embedded islands of higher Cd content with sizes of a few nanometer due to strain-induced CdSe accumulation. The local increase in CdSe concentration results in a strong localization of the excitonic wave function, in an increase in radiative lifetime, and a decrease of the dephasing rate. Local LO-phonon modes caused by the strong modulation of the Cd concentration profile are found in phonon-assisted relaxation processes. Confined biexcitons with large binding energies between 20 and 24 meV are observed, indicating the important role of biexcitons even at room temperature

    Exciton spin dynamics in spherical CdS quantum dots

    Full text link
    Exciton spin dynamics in quasi-spherical CdS quantum dots is studied in detail experimentally and theoretically. Exciton states are calculated using the 6-band k.p Hamiltonian. It is shown that for various sets of Luttinger parameters, when the wurtzite lattice crystal field splitting and Coulomb interaction between the electron-hole pair are taken into account exactly, both the electron and hole wavefunction in the lowest exciton state are of S-type. This rules out the spatial-symmetry-induced origin of the dark exciton in CdS quantum dots. The exciton bleaching dynamics is studied using time- and polarization-resolved transient absorption technique of ultrafast laser spectroscopy. Several samples with a different mean size of CdS quantum dots in different glass matrices were investigated. This enabled the separation of effects that are typical for one particular sample from those that are general for this type of material. The experimentally determined dependence of the electron spin relaxation rate on the radius of quantum dots agrees well with that computed theoretically.Comment: 24 pages, 10 figure

    Tight-Binding model for semiconductor nanostructures

    Full text link
    An empirical scpa3s_cp^3_a tight-binding (TB) model is applied to the investigation of electronic states in semiconductor quantum dots. A basis set of three pp-orbitals at the anions and one ss-orbital at the cations is chosen. Matrix elements up to the second nearest neighbors and the spin-orbit coupling are included in our TB-model. The parametrization is chosen so that the effective masses, the spin-orbit-splitting and the gap energy of the bulk CdSe and ZnSe are reproduced. Within this reduced scpa3s_cp_a^3 TB-basis the valence (p-) bands are excellently reproduced and the conduction (s-) band is well reproduced close to the Γ\Gamma-point, i.e. near to the band gap. In terms of this model much larger systems can be described than within a (more realistic) sp3s∗sp^3s^*-basis. The quantum dot is modelled by using the (bulk) TB-parameters for the particular material at those sites occupied by atoms of this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals). Strain-effects are included by using an appropriate model strain field. Within the TB-model, the strain-effects can be artifically switched off to investigate the infuence of strain on the bound electronic states and, in particular, their spatial orientation. The theoretical results for spherical nanocrystals are compared with data from tunneling spectroscopy and optical experiments. Furthermore the influence of the spin-orbit coupling is investigated
    • …
    corecore