20 research outputs found

    Comparison of drought stress indices in beech forests: a modelling study

    No full text
    Two drought stress indices were applied to managed as well as old-growth beech forests and gaps for the 2001 to 2013 period to aid in the development of an efficient tool for field water supply diagnosis. The relative extractable soil water (REW), which was calculated from the soil water content in the root zone, and the transpiration index (TI), calculated as the ratio between the actual and potential transpiration were used. Both indices were calculated on a daily basis using the water balance model BROOK90, which was fitted and tested using measured data on throughfall and soil water content. A sensitivity analysis apportioned to the input parameters of the drought stress indices was conducted to assess uncertainty. Both drought stress indices showed the greatest drought stress in the years 2009, 2003 and 2011, as also indicated by the Standardized Precipitation Evapotranspiration Index (SPEI) at the nearest meteorological station. However, drought stress intensity and duration differed between the indices and study sites. Greater water supply stress was shown in the forests than the gaps. Furthermore, the agreement among the indices was smaller for gaps compared with forests, which implies that careful index selection is needed when comparing water supply stresses in different stages of forest stand development. Due to the low amount of input data required and the parameters that can be measured with relative ease in the field, REW might be an efficient tool for field water supply diagnosis when analyzing the drought stresses of similar forest types and at unique stages of development. REW satisfactorily indicated drought stress in forests but to a lesser extent in gaps. TI demonstrated more consistent differences in drought stress between forests and gaps and therefore proved to be the appropriate index for a detailed analysis of drought stress variation between different stages of forest stand development. However, due to a greater number of required input data and more demanding parameters, TI appears to be a more complex tool than REW for field water supply diagnosis in forests

    Comparison of drought stress indices in beech forests: a modelling study

    No full text

    Predicting phenology of European beech in forest habitats

    No full text
    Reliable phenological observations are important for studying the response of trees to climate and climate change. National phenological networks were not specifically established to monitor tree phenology within forests, yet they are often used to generalise tree phenological phases at national or regional scales. Our objective was to investigate whether a phenological monitoring network using trees in open areas can accurately predict phenology of European beech (Fagus sylvatica L.) located within forests by using two models: one with correlates of environmental variables and one with interpolated monthly air temperature and sun hours. The first leaf unfolding, general leaf colouring and leaf fall dates from 2004 through 2010 were modelled using data from 47 Slovene National Phenology Network (NPN) stations in open areas and tested on phenological observations within forests using data from the UNECE CRLTAP ICP Forests network. Good agreement was found between predicted and observed first leaf unfolding in the forest, while slightly lower agreement was detected for general leaf colouring and leaf fall. Suggestions for the improvement of national phenological network are discussed in order to better predict beech phenology in forest habitats

    Predicting phenology of European beech in forest habitats

    No full text

    Tree phenology

    No full text
    corecore