638 research outputs found

    Instanton Solutions for the Universal Hypermultiplet

    Full text link
    We expand our previous analysis on fivebrane and membrane instanton solutions in the universal hypermultiplet, including near-extremal multi-centered solutions and mixed fivebrane-membrane charged instantons. The results are most conveniently described in terms of a double-tensor multiplet.Comment: Minor changes, clarification added. Contribution to the proceedings of the 36th International Symposium Ahrenshoop, August 200

    Hypermultiplets and Topological Strings

    Full text link
    The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N=2 superspace. The superspace Lagrangian for the hypermultiplets is a single function directly related to the prepotential of special geometry, and can therefore be computed using topological string theory. Similarly, a class of higher derivative terms for hypermultiplets can be computed from the higher genus topological string amplitudes. Our results provide a framework for studying quantum corrections to the hypermultiplet moduli space, as well as for understanding the black hole wave-function as a function of the hypermultiplet moduli.Comment: 21 pages, references adde

    Instantons in the Double-Tensor Multiplet

    Get PDF
    The double-tensor multiplet naturally appears in type IIB superstring compactifications on Calabi-Yau threefolds, and is dual to the universal hypermultiplet. We revisit the calculation of instanton corrections to the low-energy effective action, in the supergravity approximation. We derive a Bogomolny'i bound for the double-tensor multiplet and find new instanton solutions saturating the bound. They are characterized by the topological charges and the asymptotic values of the scalar fields in the double-tensor multiplet.Comment: 17 pages, LaTeX2e with amsmath.sty; v2: minor change

    Supergravity description of spacetime instantons

    Get PDF
    We present and discuss BPS instanton solutions that appear in type II string theory compactifications on Calabi-Yau threefolds. From an effective action point of view these arise as finite action solutions of the Euclidean equations of motion in four-dimensional N=2 supergravity coupled to tensor multiplets. As a solution generating technique we make use of the c-map, which produces instanton solutions from either Euclidean black holes or from Taub-NUT like geometries.Comment: 35 pages, some clarifications adde

    N=2 Supergravity Lagrangian Coupled to Tensor Multiplets with Electric and Magnetic Fluxes

    Full text link
    We derive the full N=2 supergravity Lagrangian which contains a symplectic invariant scalar potential in terms of electric and magnetic charges. As shown in reference [1], the appearance of magnetic charges is allowed only if tensor multiplets are present and a suitable Fayet-Iliopoulos term is included in the fermion transformation laws. We generalize the procedure in the quoted reference by adding further a Fayet-Iliopoulos term which allows the introduction of electric charges in such a way that the potential and the equations of motion of the theory are symplectic invariant. The theory is further generalized to include an ordinary electric gauging and the form of the resulting scalar potential is given.Comment: 1+34 pages LaTeX, correction of a typo in the ungauged scalar potentia

    On massive tensor multiplets

    Full text link
    Massive tensor multiplets have recently been scrutinized in hep-th/0410051 and hep-th/0410149, as they appear in orientifold compactifications of type IIB string theory. Here we formulate several dually equivalent models for massive N = 1, N=2 tensor multiplets in four space-time dimensions. In the N = 2 case, we employ harmonic and projective superspace techniques.Comment: 17 pages, LaTeX, no figures; V2: reference adde

    Non-extremal D-instantons

    Get PDF
    We construct the most general non-extremal deformation of the D-instanton solution with maximal rotational symmetry. The general non-supersymmetric solution carries electric charges of the SL(2,R) symmetry, which correspond to each of the three conjugacy classes of SL(2,R). Our calculations naturally generalise to arbitrary dimensions and arbitrary dilaton couplings. We show that for specific values of the dilaton coupling parameter, the non-extremal instanton solutions can be viewed as wormholes of non-extremal Reissner-Nordstr\"om black holes in one higher dimension. We extend this result by showing that for other values of the dilaton coupling parameter, the non-extremal instanton solutions can be uplifted to non-extremal non-dilatonic p-branes in p+1 dimensions higher. Finally, we attempt to consider the solutions as instantons of (compactified) type IIB superstring theory. In particular, we derive an elegant formula for the instanton action. We conjecture that the non-extremal D-instantons can contribute to the R^8-terms in the type IIB string effective action.Comment: 31 pages, 4 figures. v3: minor correction and reference adde

    Atomic motions in the αβ\alpha\beta-region of glass-forming polymers: Molecular versus Mode Coupling Theory approach

    Full text link
    We present fully atomistic Molecular Dynamics simulation results on a main-chain polymer, 1,4-Polybutadiene, in the merging region of the α\alpha- and betabeta-relaxations. A real space analysis reveals the occurrence of localized motions (``β\beta-like'') in addition to the diffusive structural relaxation. A molecular approach provides a direct connection between the local conformational changes reflected in the atomic motions and the secondary relaxations in this polymer. Such local processes occur just in the time window where the β\beta-process of the Mode Coupling Theory is expected. We show that the application of this theory is still possible, and yields an unusually large value of the exponent parameter. This result might originate from the competition between two mechanisms for dynamic arrest: intermolecular packing and intramolecular barriers for local conformational changes (``β\beta-like'').Comment: 10 pages, 6 figure

    N=2 Supersymmetric Scalar-Tensor Couplings

    Full text link
    We determine the general coupling of a system of scalars and antisymmetric tensors, with at most two derivatives and undeformed gauge transformations, for both rigid and local N=2 supersymmetry in four-dimensional spacetime. Our results cover interactions of hyper, tensor and double-tensor multiplets and apply among others to Calabi-Yau threefold compactifications of Type II supergravities. As an example, we give the complete Lagrangian and supersymmetry transformation rules of the double-tensor multiplet dual to the universal hypermultiplet.Comment: 23 pages, LaTeX2e with amsmath.sty; v2: corrected typos and added referenc
    • …
    corecore