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Abstract: We construct the most general non-extremal deformation of the D-instanton

solution with maximal rotational symmetry. The general non-supersymmetric solution

carries electric charges of the SL(2,R) symmetry, which correspond to each of the three

conjugacy classes of SL(2,R). Our calculations naturally generalise to arbitrary dimensions

and arbitrary dilaton couplings.

We show that for specific values of the dilaton coupling parameter, the non-extremal in-

stanton solutions can be viewed as wormholes of non-extremal Reissner-Nordström black

holes in one higher dimension. We extend this result by showing that for other values of

the dilaton coupling parameter, the non-extremal instanton solutions can be uplifted to

non-extremal non-dilatonic p-branes in p+ 1 dimensions higher.

Finally, we attempt to consider the solutions as instantons of (compactified) type-IIB

superstring theory. In particular, we derive an elegant formula for the instanton action.

We conjecture that the non-extremal D-instantons can contribute to the R8-terms in the

type-IIB string effective action.
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1. Introduction

Gravity coupled to the two scalars (dilaton and axion) that parameterise an SL(2,R)/SO(2)

coset space is an important subsector of the low-energy limit of type-IIB superstring theory.

Among the different solutions of this system are seven-brane solutions that carry magnetic

charges with respect to the three generators of SL(2,R). These magnetic charges combine

into a traceless 2 x 2 charge matrix QM which transforms in the adjoint representation of

SL(2,R). The combination det(QM ), being invariant under these transformations, labels

the three different conjugacy classes of SL(2,R). Each pair of solutions in the same con-

jugacy class is related via SL(2,R). On the other hand, two solutions that belong to two

different conjugacy classes can not be related via SL(2,R).

The three classes of inequivalent seven-brane solutions, whose magnetic charges corre-

spond to the three conjugacy classes of SL(2,R), have been constructed in [1]. All of these

seven-brane solutions are half-supersymmetric. The conjugacy class with det(QM ) = 0
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has R isometry in the transverse space and is represented by the so-called “circular” 1/2

BPS D7-brane [2]. The other two classes, with det(QM ) > 0 and det(QM ) < 0, describe

seven-branes with SO(2) and SO(1, 1) isometry in the transverse directions, respectively.

Actually, there exist two solutions describing seven-branes with SO(2) isometries [1] whose

interpretation has become clear only recently [3]. The first solution describes a set of (pos-

itively and negatively charged) D7-branes which are distributed along a finite line-element

in one of the two transverse directions. A special feature is that the total D7-brane charge

vanishes. The second solution can be obtained by taking the first solution in the limit

of a zero-size line-element. Since the total D7-brane charge vanishes, one is not left with

a single D7-brane but, instead, one obtains a conical space-time with a specific deficit

angle [3].

It is well-known that the electric-magnetic dual of the D7-brane is the D-instanton1 [4,

5]. The D-instanton is a half-supersymmetric solution of the euclidean gravity-dilaton-axion

system, where the dilaton and axion parameterise an SL(2,R)/SO(1, 1) coset, and carries

electric charge with respect to the euclidean SL(2,R) symmetry. In complete analogy to

the case of seven-branes, the three euclidean SL(2,R) charges combine into a 2 x 2 charge

matrix QE that transforms in the adjoint representation of the euclidean SL(2,R). The D-

instanton is represented by the same conjugacy class that represents the circular D7-brane,

i.e. the one with det(QE) = 0.

It is natural to ask, in analogy to the case of seven-branes discussed above, whether

there exist “exotic” instantons with electric SL(2,R) charges corresponding to the other

two conjugacy classes, i.e. the ones with det(QE) > 0 and det(QE) < 0. It is the aim of

this paper to construct and investigate such solutions. For earlier work on generalised D-

instanton solutions, see [6]–[14]. To be specific, in this paper we will construct solutions with

maximal rotational symmetry for general values of the charge matrix QE , thus generalising

the D-instanton, and for arbitrary dimension D and dilaton coupling b, thus including

compactifications of type-IIB string theory. We will always refer to the instanton solutions

in the det(QE) = 0 conjugacy class as D-instantons, though we allow for the generalisation

to arbitrary dimension and dilaton coupling.

In contrast to the D-instanton we find that solutions corresponding to the other two

conjugacy classes, in Einstein frame, do not have a flat metric but rather a conformally flat

metric (which is implied by the rotational SO(D) symmetry). Moreover, the scalars can

be expressed in terms of one rotationally symmetric function which is harmonic over the

conformally flat space. Unlike the case of seven-branes, where all three conjugacy classes

preserve half supersymmetry [1], we find that the generalised instantons of the other two

conjugacy classes do not preserve any supersymmetry. It has been noted that the standard

D-instanton has a manifest wormhole geometry in the string frame metric [4, 15]. Curiously,

we find that this holds for all values of b and D for the detQE = 0 solution in string frame

and the detQE > 0 solution in Einstein frame. In addition, for a particular value of the

dilaton coupling parameter, the same applies to the other conjugacy class with detQE < 0

provided we use the so-called dual frame metric.

1Sometimes an instanton is called a “-1 — brane” due to the fact that the transverse space fills the

complete target space. The D-instanton can be seen as the p = −1 end of the T-duality chain of Dp-branes.

– 2 –



J
H
E
P
1
0
(
2
0
0
4
)
0
3
1

One can view the generalised instantons as non-extremal deformations of the half-

supersymmetric instanton. This point of view is confirmed by the fact that a subclass

of these solutions can be viewed as describing wormholes corresponding to non-extremal

Reissner-Nordström black holes in one dimension higher. More generally, for specific values

of the dilaton coupling parameter, the non-extremal instanton solutions can be uplifted to

regular non-extremal non-dilatonic p-branes in p+ 1 dimensions higher.

Alternatively, we will describe in this paper an attempt to consider the non-extremal D-

instantons as true (albeit non-supersymmetric) instantons of type-IIB superstring theory.

In particular, we will derive an elegant expression for the instanton action. We conjecture

that, whereas the extremal D-instantons contribute to the R4 terms in the type-IIB string

effective action [5], the non-extremal D-instantons may contribute to the R8-terms in the

same effective action.

This paper is organised as follows. In section 2 we discuss the realisation of the

SL(2,R)-duality group for the euclidean case. In section 3 we give the generalised instanton

solutions mentioned above. At this point we only construct the bulk solutions without

taking care of boundary terms and/or boundary conditions. Next, in section 4 we discuss

the relation to wormholes corresponding to non-extremal Reissner-Nordström black holes in

one dimension higher. In section 5 we consider generalisations that uplift to non-extremal

p-branes in p+ 1 dimensions higher. The application as true instantons of type-IIB string

theory will be investigated in section 6. Finally, we discuss our results in section 7.

2. SL(2, R)-symmetry

In order to discuss the SL(2,R)-duality symmetry for both minkowskian and euclidean

signatures of space(-time), it is convenient to first consider a complexification of all fields

and, next, consider the Minkowski and euclidean cases as different real slices, see e.g. [16].

We thus consider the complexification of D-dimensional gravity coupled to complex

scalars that parameterise the coset

SL(2,C)

SO(2)× SO(1, 1)
(2.1)

via the scalar matrix2

MC = ebφ/2

(

1
4b

2χ2 + e−bφ 1
2bχ

1
2bχ 1

)

, (2.2)

where φ is the (complex) dilaton and χ the (complex) axion. The constant b parameterises

the coupling of the dilaton to the axion. The corresponding (complex) lagrangian is given by

LC =
1

2

√

|g|[R + b−2 Tr(∂MC ∂M−1
C )] =

1

2

√

|g|
[

R− 1

2
(∂φ)2 − 1

2
ebφ(∂χ)2

]

, (2.3)

2We will use the following notation: subscripts C refer to quantities in the complex case. For the two

real slices that we consider we use M and E which will correspond to minkowskian and euclidean signatures

of the space-times, respectively.
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where the metric gµν is complex and b is an arbitrary dilaton coupling parameter. In this

case there is an SL(2,C) symmetry which acts on the dilaton and axion in the following

way:3

MC → ΩCMC ΩT
C with ΩC =

(

a b

c d

)

∈ SL(2,C) . (2.4)

The Einstein frame metric is SL(2,C)-invariant.

We now make two different truncations of this complex system leading to real fields

and real lagrangians. One choice is to take

g∗µν = gµν , χ∗ = χ , φ∗ = φ , (2.5)

and to take the (real) metric to be minkowskian. For the two (real) scalars this leads to

the coset
SL(2,R)

SO(2)
(2.6)

parameterised by MM = MC as given in (2.2) with φ and χ both real. The lagrangian

LM for this case is given by (2.3) where both the metric and the two scalars are real. The

SL(2,R) symmetry is given by

MM → ΩMMM ΩT
M with ΩM =

(

a b

c d

)

∈ SL(2,R) . (2.7)

Equivalently, the SL(2,R) transformations can also be defined as modular transformations

on the complex field

τ =
b

2
χ+ i e−bφ/2 . (2.8)

The lagrangian for the scalars can then be rewritten as4

Lscal
M = −

(

2

b2

)∣

∣

∣

∣

∂τ

Im τ

∣

∣

∣

∣

2

, (2.9)

with symmetry

τ → aτ + b

cτ + d
, ad− bc = 1 . (2.10)

This theory occurs for example as the scalar section of IIB supergravity in D = 10

Minkowski space-time with dilaton-coupling parameter b = 2. Other values of b can arise

when considering (truncations of) compactifications of IIB supergravity. For instance, in

D = 3 one has supersymmetry for b = 2, b =
√
2, b =

√

4/3 and b = 1.

In the second case, on which we will concentrate in this paper, we first redefine χ→ iχ

and next impose the same reality conditions (2.5) with the only difference that we now

take the (real) metric to be euclidean. For the two (real) scalars this leads to the coset

SL(2,R)

SO(1, 1)
(2.11)

3The dilaton coupling parameter b in (2.3) is of course different from the parameter b in the SL(2,R)

transformations below. It should always be clear from the context what is meant.
4Throughout this paper we assume that b 6= 0. Note that for b = 0 the euclidean SL(2,R) symmetry

degenerates to a I SO(1, 1) symmetry.
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parameterised by

ME = ebφ/2

(

−1
4b

2χ2 + e−bφ 1
2 ibχ

1
2 ibχ 1

)

, (2.12)

where φ and χ are both real.5 The corresponding euclidean lagrangian is

LE =
1

2

√
g [R+ b−2 Tr(∂ME ∂M−1

E )] =
1

2

√
g

[

R− 1

2
(∂φ)2 +

1

2
ebφ(∂χ)2

]

, (2.13)

with all fields real. For b = 2 and D = 10 this is the gravity-scalar part of IIB supergravity

after a Wick rotation, i.e. in euclidean space. Again, compactifications of the D = 10

theory can give rise to other values of b. The SL(2,R) symmetry for the euclidean case

acts as (see also [17]):

ME → ΩEME ΩT
E with ΩE =

(

a ib

−ic d

)

, (2.14)

with a, b, c, d real parameters satisfying ad− bc = 1.

Given the SL(2,R) symmetry of the field equations, there are corresponding currents.

In the euclidean case the SL(2,R) currents are given by the matrix, see e.g. [18],

Jµ = (∂µME)M−1
E =

(

j
(3)
µ i j

(+)
µ

i j
(−)
µ −j(3)µ

)

, (2.15)

with the following components:

j(3)µ =
1

2
ebφ∂µ

(

e−bφ − 1

4
b2χ2

)

, j(−)
µ =

1

2
bebφ∂µχ ,

j(+)
µ = −bχj(3)µ +

(

e−bφ − 1

4
b2χ2

)

j(−)
µ . (2.16)

We use here a basis where j
(3)
0 generates a SO(1, 1) subgroup of SL(2,R) while j

(±)
0 each

generate a differently embedded R subgroup of SL(2,R). The currents (2.15) satisfy the

following field equations and Bianchi identities:

∇µJ
µ = 0 , ∂[µJν] = J[µJν] . (2.17)

The first equation corresponds to the field equations of the lagrangian (2.13) and the second

equation follows from the definition (2.15).

Using Stokes’ theorem the electric charges of a solution are obtained by integrating

the currents over a (D − 1)-sphere. We define our charge matrix as follows:

QE =
(2 (D − 1) (D − 2))−1/2

bVol(SD−1)

∫

SD−1

Jµn
µ , (2.18)

5Note the occurrence of factors of i in (2.12). What matters is that the lagrangian (2.13) and the

transformation rules of the scalars (2.14) are real.
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where nµ is an outward directed unit vector. Under an SL(2,R) transformation (2.14) the

corresponding charge matrix transforms as

QE → ΩE QE Ω−1
E . (2.19)

Note that the determinant of QE is invariant under SL(2,R). Thus solutions with different

values of det(QE) can never be related via SL(2,R)-transformations. As discussed in the

introduction the cases det(QE) = 0,det(QE) > 0 and det(QE) < 0 describe the three

different conjugacy classes of SL(2,R).

3. Instanton solutions

In this section we will consider instanton-like solutions to the bulk equations of motion.

Issues like boundary terms and values of the action are postponed to section 6.

3.1 Bulk solutions

We consider the euclidean gravity-dilaton-axion system in D ≥ 3 dimensions given by the

lagrangian (with arbitrary dilaton coupling parameter b)

LE =
1

2

√
g

[

R− 1

2
(∂φ)2 +

1

2
ebφ(∂χ)2

]

, (3.1)

and search for generalised D-instanton solutions with manifest SO(D) symmetry of the

form6

ds2 = e2B(r)(dr2 + r2dΩ2
D−1) , φ = φ(r) , χ = χ(r) . (3.3)

The standard D-instanton solution [4] is obtained for the special case that B(r) is constant.

In order to obtain an SO(D) symmetric generalised D-instanton solution, we allow for a

non-constant B(r) and solve the field equations following from the euclidean action (3.1),

which read

Rµν =
1

2
∂µφ∂νφ−

1

2
ebφ∂µχ∂νχ ,

0 = ∂µ

(√
ggµνebφ∂νχ

)

,

0 =
b

2
ebφ(∂χ)2 +

1√
g
∂µ (

√
ggµν∂νφ) . (3.4)

The expression for the Ricci tensor for the Ansatz (3.3) is given by

Rrr = −(D − 1)

(

B′′(r) +
B′(r)

r

)

,

6Note that by using reparameterisations of r one can obtain different, but equivalent, forms of the metric

in which the SO(D) symmetry is non-manifest, in particular

ds2 = e2 B(r)(e−2 f(r)dr2 + r2dΩ2
D−1) , (3.2)

in analogy to what we will encounter later, see (5.2). We choose to take as our starting point a conformally

flat metric, i.e. f(r) = 0.
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Rθθ = −e−2B(r) gθθ

[

B′′(r) + (D − 2)B ′(r)2 + (2D − 3)
B′(r)

r

]

, (3.5)

where the prime denotes differentiation with respect to r and θ denote the angular coor-

dinates. In addition to the SL(2,R) symmetry these field equations are invariant under a

constant Weyl rescaling of the metric7

gµν → e2ωgµν . (3.6)

However, this is only a symmetry of the field equations and not of the action. In our

Ansatz (3.3), this has the effect of shifting B with a constant, i.e. B → B + ω.

One can consider the angular component of the Einstein equation of (3.4) to solve

for B(r). Having solved for B(r) the expressions for the dilaton and axion scalars can be

obtained from the remaining two equations of (3.4). We thus obtain the following solution8

for B(r), φ(r) and χ(r), which extends the solution given in [10] to arbitrary b:

e(D−2)B(r) = f+(r) f−(r) ,

ebφ(r) =

(

q−
2 q

[

eC1

(

f+(r)

f−(r)

)b c/2

− e−C1

(

f+(r)

f−(r)

)−b c/2
])2

,

χ(r) =
2

b q−

[

q

(

eC1(f+(r)/f−(r))
b c/2 + e−C1 (f+(r)/f−(r))

−b c/2

eC1 (f+(r)/f−(r))b c/2 − e−C1 (f+(r)/f−(r))−b c/2

)

− q3

]

.(3.7)

The solution is given in terms of the two flat-space harmonic functions

f±(r) = 1± q

rD−2
(3.8)

and the four integration constants q, q3, q− and C1. The integration constant q is defined

as the square root of q2, which is an integration constant that can be positive, zero or

negative.9 Finally, the constant c is given by

c =

√

2(D − 1)

(D − 2)
. (3.9)

Note that the metric, specified by B(r) given in (3.7), only depends on the product of f+

and f− whereas the scalars only depend on the quotient of f+ and f−. This reflects the

presence of the scale symmetry (3.6), whose effect is to scale both f± with the same factor.

The constants q2 and q− occur with inverse powers and have been taken non-zero in the

above solution. Below, we will see that sending them to zero yields interesting limits.

7In contrast to SL(2,R), the constant Weyl rescaling symmetry is broken by O(α′) corrections.
8For practical purposes we omit an overall ± sign corresponding to the Z2 symmetry of the axion,

corresponding to the choice between instanton and anti-instanton. This sign affects some signs in the

SL(2,R) charges of the solution, but does not change its conjugacy class.
9Note that this implies that the solution (3.7) is not manifestly real, since q can be imaginary. Below,

we discuss this issue separately for the three cases q2 positive, negative or zero.
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The solution (3.7) carries electric SL(2,R) charges given by

QE =

(

q3 iq+
iq− −q3

)

, (3.10)

where we have defined the dependent integration constant q+ via

q2 = −q+q− + q3
2 = −det(QE) . (3.11)

Thus, the solution (3.7) has general SL(2,R) charges (q+, q−, q3).

The appearance of the four independent integration constants, q2, q−, q3 and C1, can

be understood as follows. As can be inferred from the solution (3.7), the constant q3

corresponds to the freedom to apply R transformations, which shift the axion. Similarly,

the constant q− corresponds to SO(1, 1) transformations, which scale the axion and shift

the dilaton. By applying such transformations one can shift q3 with arbitrary numbers

while q− can be rescaled with a positive number. The constant C1 is shifted as follows

C1 → C1 − 2λ q (3.12)

under the SL(2,R) transformation, with parameter λ, whose generator is given by the

electric charge matrix:

ΩE = exp(λQE) . (3.13)

Since QE is invariant under such transformations, see (2.19), while C1 is shifted, this

explains why C1 does not appear in (3.10). The remaining constant, q2, is invariant under

SL(2,R) and thus does not correspond to these symmetry transformations. Rather, this

constant corresponds to the freedom to perform rescalings of the metric (3.6). To retain a

metric that asymptotically goes to 1, this must be combined with an appropriate rescaling

of r. The resulting effect of this transformation is a rescaling of q2 with a positive number.

One therefore always stays in the same conjugacy class under such transformations.

The solution (3.7) can be written in a more compact form by using, instead of the two

functions f+ and f− which are harmonic over D-dimensional flat space, a function H(r)

which is harmonic over a conformally flat space with the conformal factor specified by the

function B(r) given in (3.7), i.e.

∂

∂r

(

rD−1e(D−2)B(r) ∂H(r)

∂r

)

= 0 . (3.14)

The general solution to this equation is of the following form:

H(r) ∝ log

(

f+(r)

f−(r)

)

. (3.15)
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We can, therefore, rewrite the solutions (3.7) as follows:

ds2 =

(

1− q2

r2 (D−2)

)2/(D−2)

(dr2 + r2dΩ2
D−1) ,

eb φ(r) =

(

q−
q

sinh(H(r) + C1)

)2

,

χ(r) =
2

b q−
(q coth(H(r) + C1)− q3) ,

(3.16)

where

H(r) =
b c

2
log

(

f+(r)

f−(r)

)

. (3.17)

The solutions (3.16) are valid both for q2 positive, negative and zero. Below we discuss

the reality and validity of the solutions for each of these three cases. Note that we use the

Einstein frame.

• q2 > 0: in this case q is real and the solution is given by (3.16) with all constants

real. However, the metric poses a problem: it becomes imaginary for

rD−2 < rD−2
c = q . (3.18)

One can check that there is a curvature singularity at r = rc. However, this curvature

singularity happens at strong string coupling:

eφ(r) →∞ , r → rc . (3.19)

Between r = rc and r = ∞, H varies between ∞ and 0, and with an appropriate

choice10 of C1, i.e. a positive value of C1, the scalars have no further singularities in

this domain. Thus one might hope to have a modification of this solution by higher-

order contributions to the effective action of IIB string theory [11]. Alternatively, one

can consider the possible resolution of this singularity upon uplifting. In the next

section, we will see that this indeed happens for the special case of

b =

√

2(D − 2)

D − 1
, (3.20)

equivalent to bc = 2.

In the case with q2 > 0, there is an interesting limit in which q− → 0. For generical

values of the other three constants, this yields a non-sensible solution with infinite

scalars. To avoid this, one must simultaneously impose

C1 → − log

(

q−
2q

)

, q3 → q− q+q−
2q

, q− → 0 . (3.21)

10According to (3.12), the constant C1 can be changed by an SL(2,R) transformation, leading to singular

scalars (but non-singular currents, which are independent of C1). However, since these are related to regular

scalars by a global SL(2,R) transformation, this does not pose a problem.
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This yields a well-defined limit, in which the scalars read

eφ/c =
f+

f−
, χ =

−q+
bq

, (3.22)

while the metric is unaffected and given by (3.7). Note that in this limit the dilaton

becomes independent of b: when the axion is constant, the dilaton coupling drops

out of the field equations. In this limit, one is left with two independent integration

constants, q+ and q2. The range of validity of this solution is equal to that of the

above solution with q− 6= 0: it is well-defined for r > rc, while at r = rc the metric has

a singularity and the dilaton blows up. We will find that this singularity is resolved

upon uplifting for all values of bc ≥ 2.

• q2 = 0 : we now consider the limit q2 → 0 of the general solution (3.16). Taking this

limit for generic values of C1, one sees that eφ(r) → ∞ for all r. The only way to

avoid this bad behaviour is to have C1 → 0, as q2 → 0. Thus, to obtain a well-defined

limit, we simultaneously take

C1 → gb/2s

q

q−
, q2 → 0 . (3.23)

The constant gs is assumed positive and will correspond to the value of eφ(r) at r =∞.

Taking the limit (3.23) of the general solution (3.16) yields the extremal solution:

ds2 = dr2 + r2 dΩ2
D−1 , eb φ(r)/2 = h χ(r) =

2

b

(

h−1 − q3
q−

)

, (3.24)

where h(r) is the harmonic function:

h(r) = gb/2s +
b c q−
rD−2

, (3.25)

This is the extremal D-instanton solution of [4]. This solution is regular over the

range 0 < r < ∞ provided one takes both gs and b c q− positive; at r = 0 however,

the harmonic function blows up and the scalars are singular.

• q2 < 0: in this case q is imaginary. To obtain a real solution we must take C1 to be

imaginary. We therefore redefine

q→ i q̃ C1 → i C̃1 , (3.26)

such that q̃ and C̃1 are real. One can now rewrite the solution (3.16) by using the

relation11

log

(

f+

f−

)

= 2arctanh
( q

rD−2

)

, (3.27)

11Here we have used the general relation log((1 + x)/(1− x)) = 2 arctanh(x).
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and, next, replacing the hyperbolic trigonometric functions by trigonometric ones in

such a way that no imaginary quantities appear. We thus find that, for q2 < 0, the

general solution (3.16) takes the following form:

ds2 =

(

1 +
q̃2

r2 (D−2)

)2/(D−2)

(dr2 + r2 dΩ2
D−1) ,

ebφ(r) =

(

q−
q̃

sin(b c arctan

(

q̃

rD−2

)

+ C̃1)

)2

,

χ(r) =
2

b q−

(

q̃ cot

(

b c arctan

(

q̃

rD−2

)

+ C̃1

)

− q3

)

.

(3.28)

The metric and curvature are well behaved over the range 0 < r < ∞. However,

the scalars can only be non-singular over the same range by an appropriate choice

of C̃1 provided that bc < 2. This can be seen as follows. The arctan varies over

a range of π/2 when r goes from 0 to ∞. It is multiplied by bc and thus the ar-

gument of the sine varies over a range of more than π if bc > 2. Therefore, for

bc > 2 there is always a point rc such that χ → ∞ as r → rc. Note that the break-

down of the solution occurs at weak string coupling: eφ → 0 as r → rc. In the

next section we will find that this singularity is not resolved upon uplifting and will

correspond to a naked singularity. The same holds for the liming case of bc = 2.

Therefore the case q2 < 0 only yields regular instanton solutions for bc < 2, to-

gether with the condition that C1 and C1 + bcπ/2 are on the same branch of the

cotangent.

3.2 Wormhole geometries

It is known [4] that the standard D-instanton, i.e. D = 10, b = 2, in string frame has the

geometry of a wormhole, i.e. it has two asymptotically flat regions connected by a neck,

see figure 1. It will therefore be interesting to investigate whether there exists frames in

which the non-extremal instantons also have the geometries of wormholes.

r
r=0 r=r r= ∞sd

ρ=ρsd

Figure 1: The geometry of a wormhole. The two asymptotically flat regions at r = 0 and r = ∞
are connected via a neck with a minimal physical radius ρsd at the self-dual radius rsd.
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We consider a general wormhole metric of the form

ds2 = f(r)2/(D−2) (dr2 + r2dΩ2) , f(r) = α+ βr2−D + γr4−2D , (3.29)

where α, β and γ are constants. The metric has a Z2 isometry corresponding to the

transformation rD−2 → γ r2−D/α which interchanges the two asymptotically flat regions.

The physical radius ρ is the square root of the coefficient of the angular part of the metric,

given by ρD−2 = f(r)rD−2. The minimum of this physical radius of the neck occurs at the

fixed point of the transformation above, i.e. at the so-called self-dual radius rD−2
sd =

√

γ/α,

and is given by ρD−2
sd = 2

√
αγ + β. We will now study the three conjugacy classes in order

to see for each case if there exists a frame12 in which the metric takes the form (3.29).

• q2 > 0: as we will see in section 4, the appropriate frame in this case is the frame

dual to the instanton, i.e. the (D − 3)-brane frame, given by

gdual
µν = ebφ/(D−2) gE

µν . (3.30)

In the special case of b c = 2, the metric takes the form (3.29) in the dual frame with

f(r) =
q−
q

sinh(C1) + 2q− cosh(C1)r
2−D + q−q sinh(C1)r

4−2D . (3.31)

This gives the self-dual radius rsd and the minimal physical radius ρsd

rD−2
sd = q , ρD−2

sd = 2q−e
C1 . (3.32)

Note that the self-dual radius rsd coincides with the critical radius rc of the previous

section: the curvature singularity in Einstein frame becomes the center of the worm-

hole in the dual frame. The limit q− → 0, with appropriate scaling of C1 as given

in (3.21), yields ρD−2
sd = 4q. For generic values of bc, the instanton metrics can not

be written in the form (3.29) in any frame.

• q2 = 0: it turns out that for any value of b the wormhole geometry is made manifest

by going to the string frame

gstr
µν = e2bφ/(D−2) gE

µν , . (3.33)

In this frame, the metric is given by (3.29) with

f(r) = gbs + 2bcq−g
b/2
s r2−D + (bcq−)

2r4−2D . (3.34)

This gives the self-dual and minimal physical radii

rD−2
sd =

bcq−

g
b/2
s

, ρD−2
sd = 4bcq−g

b/2
s . (3.35)

12In arbitrary dimension one can define three different frames as follows: in the Einstein frame the

Einstein-Hilbert term has no dilaton factor, in the string frame the kinetic term for the axionic field

strength comes without a dilaton factor (like all Ramond-Ramond field strengths) and in the dual frame

the Einstein-Hilbert term, the dilaton kinetic term and the kinetic term for the dual field strength (i.e.

F 2
D−p−2 for the frame dual to a p-brane) come with the same dilaton factor (see e.g. [19, 20] for a more

detailed discussion).
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• q2 < 0: here the metric has the appropriate form already in Einstein frame so

from (3.28) we get, for any value of b,

rD−2
sd = q̃ , ρD−2

sd = 2q̃ . (3.36)

We thus see that for all three conjugacy classes there exists frames in which the solu-

tions have the geometries of wormholes.

3.3 Instanton solutions with multiple dilatons

We will now consider extensions of the instanton solution of the previous sections, which

is carried by the SL(2,R) scalars φ and χ. We will extend this system with n dilatons ϕα
(α = 1, . . . , n), which are SL(2,R) singlets and do not couple to the axion (this can always

be achieved by field redefinitions provided one allows for an arbitrary dilaton coupling b to

the original dilaton φ). We will call the corresponding solution a multi-dilaton instanton.

The multi-dilaton action is given by

LE =
1

2

√
g

[

R− 1

2

n
∑

α=1

(∂ϕα)
2 − 1

2
(∂φ)2 +

1

2
ebφ (∂χ)2

]

. (3.37)

with field equations (3.4) plus n equations, requiring ϕα to be harmonic in the curved

space. The case of one extra dilaton was considered in [21].

The solution to this system has the same metric as given in (3.7), see also [21]. Then

the extra dilatons ϕα satisfy a d’Alembertian equation in a conformally flat background

specified by B(r) as given in (3.7):

∂

∂r

(

rD−1e(D−2)B(r) ∂ϕ(r)

∂r

)

= 0 . (3.38)

This equation is solved by the harmonic function as given in (3.15), yielding dilatons

given by

ϕα = να + µα log

(

f+(r)

f−(r)

)

, (3.39)

with 2n integrations constants να and µα.

Of course, due to the presence of the extra dilatons ϕα, the Einstein equation in (3.4)

is modified. It turns out that the contribution of ϕα to the energy-momentum tensor is

cancelled by similar µα-dependent contributions of the dilaton φ and the axion χ to the

energy-momentum tensor. Since all µα-dependent contributions of the dilatons and the

axion to the energy-momentum tensor cancel against each other, this extension allows for

a µα-independent metric.

4. Uplift to black holes

4.1 Kaluza-Klein reduction

In this section we consider the possible higher-dimensional origin of the euclidean sys-

tem (3.1) as a consistent truncation of the (D + 1)-dimensional lagrangian, defined over
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Minkowski space,

LD+1 =
√

−ĝ
[

R̂− 1

2
(∂φ̂)2 − 1

4
eaφ̂ F̂ 2

]

, (4.1)

with the rank-2 field strength F̂ = dÂ. It consists of an Einstein-Hilbert term (for a metric

of lorentzian signature), a dilaton kinetic term and a kinetic term for a vector potential

with arbitrary dilaton coupling, parameterised by a. The corresponding ∆ value [22] is

given by

∆ = a2 +
2 (D − 2)

D − 1
, (4.2)

which characterises the dilaton coupling in D + 1 dimensions.

The reduction Ansatz over the time coordinate is

d̂s
2
= e2αϕ ds2 − e2βϕ dt2 , Â = χdt , φ̂ = φ , (4.3)

with the constants

α2 =
1

2 (D − 1) (D − 2)
, β = −(D − 2)α , (4.4)

which are chosen such as to obtain the Einstein frame in the lower dimension with appro-

priate normalisation of the dilaton ϕ. Note that the dilaton factor in front of the spatial

part of the metric ĝµν coincides, for bc = 2, with the dual frame defined in section 3.2.

With the Ansatz as above, the Einstein-Maxwell-dilaton system reduces to the D-

dimensional euclidean system

LD =
√−g

[

R− 1

2
(∂φ)2 − 1

2
(∂ϕ)2 +

1

2
ea φ−2 β ϕ (∂χ)2

]

. (4.5)

Next, we perform a field redefinition corresponding to a rotation in the (φ, ϕ)-plane such

that we obtain

LD =
√−g

[

R− 1

2
(∂φ̃)2 − 1

2
(∂ϕ̃)2 +

1

2
eb φ̃ (∂χ)2

]

, (4.6)

with dilaton coupling b given by

b =

√

a2 +
2(D − 2)

D − 1
. (4.7)

The corresponding value of ∆ is equal to the original value (4.2). This system can be

truncated to the one we are considering by setting ϕ̃ = 0.

Therefore, the system that we consider in section 3 has a higher-dimensional origin if

the dilaton coupling satisfies bc ≥ 2 or

b ≥
√

2(D − 2)

D − 1
. (4.8)

The case which saturates the inequality, i.e. a = 0, can be uplifted to an Einstein-Maxwell

system without the dilaton φ̂. For bc > 2 one needs to include an explicit dilaton φ̂ in
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the higher-dimensional system, i.e. one must consider the Einstein-Maxwell-dilaton sys-

tem (4.1) with a 6= 0. Note that in string theory toroidal reductions, under which the

combination ∆ is preserved, only lead to values of b with bc ≥ 2.

Since the euclidean gravity-axion-dilaton system we are considering can be obtained as

a consistent truncation of the higher-dimensional minkowskian Einstein-Maxwell-dilaton

system (4.1), it is natural to look for a higher-dimensional origin of the non-extremal

instanton solutions within this system. In the following two sections we consider the cases

bc = 2 and bc > 2 separately. The instantons with bc < 2 have no higher-dimensional

origin from toroidal reduction.

4.2 Reissner-Nordström black holes: bc = 2

It is not difficult to see that for bc = 2 the generalised instanton solutions uplift to the

(D + 1)-dimensional Reissner-Nordström (RN) black hole solution

ds2 = −g+(ρ) g−(ρ) dt2 +
dρ2

g+(ρ) g−(ρ)
+ ρ2dΩ2

D−1 , Ftρ = −∂ρAt = (D − 2) c
Q

ρD−1
,

(4.9)

where

g±(ρ) = 1− ρD−2
±

ρD−2
, ρD−2

± =M ±
√

M2 −Q2 , (4.10)

and Q (M) is the charge (mass) of the black hole. The RN black hole has naked singularities

for M2 < Q2, while these are cloaked for M 2 ≥ Q2, yielding a physically acceptable space-

time. Note that the coordinate ρ coincides with the physical radius of the previous section,

for which the angular part of the metric dΩ2
D−1 is multiplied by ρ2.

In order to establish the precise relation between the charge Q and the mass M of the

RN black hole and the SL(2,R) charges of the bc = 2 instanton solutions given in (3.16)

we must first cast the RN metric in isotropic form as follows:

ds2 = − g(r)

ρ(r)2 (D−2)
dt2 +

ρ(r)2

r2
(dr2 + r2 dΩ2

D−1) , (4.11)

where

ρ(r) =

(

rD−2 +M +
M2 −Q2

4 rD−2

)1/(D−2)

, g(r) =

(

rD−2 − M2 −Q2

4 rD−2

)2

. (4.12)

To relate the instanton and black hole solutions we need to choose proper boundary con-

ditions for the instanton solutions (3.16), which are implied by the boundary conditions of

the RN black hole:

limr→∞ gtt = −1 ,
limr→∞At = 0 ,

⇐⇒ limr→∞ eφ = 1 ,

limr→∞ χ = 0 .
(4.13)

This fixes the constants C1 and one of the three SL(2,R) charges q3 in (3.16) as follows:

C1 = arcsinh

(

q

q−

)

, q3 = q coth(C1) =
√

q2 + q2
− . (4.14)
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The relation between the charge Q and the mass M of the RN black hole and the two

unfixed SL(2,R) charges q− and q2 is:

Q = −2 q− , M = 2
√

q2 + q2
− , (4.15)

such that

q2 =
M2 −Q2

4
. (4.16)

From (4.16) we see that the physically acceptable non-extremal RN black holes with

M2 ≥ Q2 coincide with the uplifted instanton solutions in the q2 = 0 and q2 > 0 conjugacy

classes:

M2 > Q2 ⇔ q2 > 0 ,

M2 = Q2 ⇔ q2 = 0 . (4.17)

More specifically, we find that the non-extremal (extremal) RN metric in isotropic co-

ordinates (4.11) reduces to the q2 > 0 (q2 = 0) instanton solution in the dual frame

metric (3.30). Note that the q2 > 0 instanton has a wormhole geometry in the dual frame

metric. It turns out that the minimal physical radius ρsd for this case is given by ρsd = ρ+,

where ρ+ is the position of the outer event horizon given in (4.10).

4.3 Interpretation of instantons as BH wormholes

In the previous section we have seen that the non-extremal D-instanton solutions (3.16) in

the dual frame metric (3.30) with b c = 2 and M 2 ≥ Q2 can be viewed as a t = constant

space-like section of the RN black hole metric (4.11). In the Kruskal-Szeres-like extension

of the RN black hole, the spatial part of the metric (4.11) has the geometry of an Einstein-

Rosen bridge or wormhole, which connects two asymptotically flat regions of space (see [23]

for a general introduction to black holes). Indeed, the spatial part of (4.11) has, for

M2 > Q2, the Z2 isometry

rD−2 → M2 −Q2

4 rD−2
, (4.18)

which relates each point on one side of the Einstein-Rosen bridge to a point on the other

side.

It is instructive to consider the special case of the Schwarzschild black hole, (i.e. Q = 0).

Due to (4.15), this corresponds to the uplift of instantons with q− = 0, i.e. the solutions

given in (3.21). As shown in figure 2, in the Kruskal-Szeres extension of the Schwarzschild

black hole, every t = constant section of space time corresponds to a straight space-like line

going through the origin of this coordinate system, with slope determined by the constant

value of t.

Notice that on each line, the coordinate r from (4.11) runs from r = 0 at the spatial

infinity on the left-hand-side, to r = ∞ on the right-hand-side. The fixed point of the

Z2-isometry (4.18) (now with Q = 0) is positioned at the center of figure 2. The value of

r at this fixed point and the corresponding minimal physical radius is given by

rD−2
sd =

1

2
M , ρD−2

sd = 2M . (4.19)
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→ ∞r
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t = constant

T
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=ρ ρ
+

Figure 2: Schwarzschild black hole in Kruskal-Szeres coordinates. Spatial sections with t =

constant are space-like lines through the origin, going from region IV to region I . T and X are the

Kruskal-Szeres time-like and space-like directions respectively. The horizons are at ρ = ρ+, which

coincides with the minimal physical radius at the center ρ = ρsd.

Note that this value of the physical radius corresponds to the horizon of the black hole, as

can also be seen from figure 2. One can make the wormhole geometry visible by associating

to every value of r a (D − 1)−sphere. Representing every (D − 1)−sphere by a circle one

obtains the wormhole picture of figure 1.

In the more general case (i.e. Q 6= 0), the t = constant sections are still paths connect-

ing two regions of the RN black hole. To see what these regions correspond to, it is helpful

to draw a Carter-Penrose diagram, see figure 3. The wormhole geometry is qualitatively

the same as in the Schwarzschild case. The position of the wormhole throat and the value

of the minimal physical radius are given by

rD−2
sd =

1

4
(M2 −Q2) , ρD−2

sd =M +
√

M2 −Q2 , (4.20)

which again coincide with the horizon at ρ = ρ+. The curvature singularity of the D-

instanton solutions with q2 > 0 (3.16) at rc = (q)1/D−2 are resolved in this uplifting and

can now be understood as the usual coordinate singularity of the RN black hole outer event

horizons (i.e. ρ = ρ+, or r
2 (D−2) = (M2 −Q2)/4).

The extremal RN black hole (i.e. M 2 = Q2) is qualitatively different from the other

cases. As one can see from (4.18), the Z2-isometry is gone. By taking the limit M 2 → Q2

of a non-extremal black hole we see that the wormhole stretches to an infinitely long

throat. The fixed point of the isometry goes to spatial infinity at r = 0. This means

that the extremal black hole has a ”one-sided” wormhole with a minimal physical radius

ρD−2
0 =M , and the full Kruskal-like extension is geodesically complete without need for a

region IV . This situation is illustrated in figure 4.

4.4 Dilatonic black holes: bc > 2

The instantons with bc > 2 uplift to non-extremal dilatonic black holes, i.e. black hole

solutions carried by a metric, a vector and a dilaton. In fact, the uplift is identical to a
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IIV

t = constant

r =r = 0 ∞

=ρ ρ
+

Figure 3: Carter-Penrose diagram of RN black hole. The lines with ρ = ρ+ are the horizons,

which coincide with the minimal physical radius ρ = ρsd in the center.

r= ∞
r

r=0

ρ=ρ0

Figure 4: The geometry of the extremal black hole as a ”one-sided” wormhole with minimal

physical radius ρ0.

version of the black hole solution presented in [24]. To be more precise, the non-extremal

dilatonic black hole solutions of [24] contain an extra parameter µ. For generic values of

this parameter the black hole solution is singular.13 One only obtains a regular solution

if14 µ ∼ q.

The uplift of the bc > 2 instantons equals the µ → 0 limit of the non-extremal black

hole solutions of [24]. Therefore, in contradistinction to the bc = 2 case, we obtain a

singular black hole solution. This singularity can only be avoided in two limiting cases.

The singularity disappears both in the extremal limit (3.23) when q2 → 0 and in the

Schwarzschild limit (3.22) when q− → 0, where the dilaton decouples.

5. Uplift to p-branes

In section 4 we have discussed the uplift of the instantons of section 3 to higher-dimensional

black hole solutions. It is therefore natural to consider the uplift to higher-dimensional p-

branes. To this end it will be useful to first introduce the following nomenclature.

13These (singular) solutions are a generalisation of the (regular) black holes of [25].
14The parameter q2 can be identified with the parameter k of [24].
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Non-extremal deformations of general p-branes have been considered in [27, 24]. These

are solutions of the (D + p+ 1)-dimensional lagrangian, defined over Minkowski space,

LD+p+1 =
√

−ĝ
[

R̂− 1

2
(∂φ̂)2 − 1

2 (p+ 1)!
eaφ̂ Ĝ2

(p+2)

]

, (5.1)

with the rank-(p+2) field strength Ĝ(p+2) = dĈ(p+1). For a p-brane in D+p+1 dimensions

the metric (in Einstein frame) is of the form

ds2 = e2A(−e2fdt2 + dxp
2) + e2B(e−2fdr2 + r2dΩD−1

2) , (5.2)

where A, B and f are functions that depend on the radial coordinate r only. It is convenient

to introduce the quantity

X = (p+ 1)A+ (D − 3)B . (5.3)

The extremal p-brane solutions with equal mass and charge, preserving half of the super-

symmetry, are obtained by taking X = f = 0.

Assuming that D ≥ 3 there exist two types of non-extremal p-brane solutions in the

literature. Following [24], we will call them type 1 and type 2 non-extremal p-branes:

• Type 1 non-extremal p-branes: X = 0 and f 6= 0.

These are the non-extremal black branes of [27, 28]. The deformation function f is

given by

e2f = 1− k

rD−2
, (5.4)

where k is the deformation parameter. In a different coordinate frame, with radial

coordinates ρ, these branes can be expressed in terms of the two harmonic functions

f±(ρ) = 1−
(

ρ±
ρ

)D−2

. (5.5)

Physical branes without a naked singularity have more mass than charge, which

corresponds to ρ+ > ρ− or k > 0. For this type of non-extremal deformation, the

dilaton φ̂ is proportional to A and B, which are linearly related since X = 0.

• Type 2 non-extremal p-branes: X 6= 0 and f = 0.

These are the non-extremal black branes of [24]. The deformation function X reads

eX = 1− k

r2(D−2)
, (5.6)

where k is the deformation parameter. The absence of naked singularities requires k

to be positive. In this case, the dilaton φ̂ is not proportional to A or B, which are

not linearly related.

The non-extremal D-instanton solutions (3.16) fit exactly in this chain of non-extre-

mal p-branes for p = −1. Although the type 2 non-extremal p-branes are defined in

Minkowski space, we find that one can extend the formulae of [24] to p = −1 branes

in euclidean space, i.e. generalised D-instantons, by taking f = 0 and B 6= 0.
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Both types of non-extremal p-branes break supersymmetry. A special case is p = 0, for

which the regular type 1 and type 2 non-extremal 0-branes are equivalent up to a coordinate

transformation in r. From the form of the metric (5.2), which has different world-volume

isometries for f = 0 and f 6= 0, it is clear that this is not the case for p > 0.

To relate the (multi-dilaton) instanton solutions of section 3 to the non-extremal p-

branes, it is instructive to reduce the p-branes over their (p+1)-dimensional world-volume,

including time. In complete analogy to the reduction over time of section 4.1, this will

give rise to p + 1 dilatons from the world-volume of the p-brane. However, these are

not all unrelated: for one thing, the dilatons corresponding to the spatial world-volume

will be proportional to each other, and can therefore be truncated to a single dilaton.

We will denote the dilaton from the spatial metric components by ϕ, while the time-like

component of the metric gives rise to ϕ̃. In general, the reduction of non-extremal p-branes

will therefore give rise to a multi-instanton solution with three different dilatons, including

the explicit dilaton φ:

ĝtt → ϕ̃ , ĝxx → ϕ , φ̂→ φ . (5.7)

For the two types of non-extremal deformations considered here, however, there is always

a relation between the three dilatons, allowing a truncation to two dilatons.15 For the

type 1 deformations the dilatons φ and ϕ are related, as can be seen from the metric

with X = 0. Similarly, the type 2 deformations yield a relation between ϕ and ϕ̃ since

f = 0. Therefore, these non-extremal p-branes reduce to multi-dilaton instanton solutions

with two inequivalent dilatons. Conversely, two-dilaton instanton solutions can uplift to

either types of non-extremal p-branes, by embedding these dilatons in different ways in the

higher-dimensional metric and dilaton.

It is interesting to investigate when these two dilatons can be related or reduce to

one, therefore corresponding to our explicit SL(2,R) instanton solution (3.7) with only

one dilaton. For the type 1 deformations, this is only possible for the special case with

p = 0 and a = 0. For these values, the dilatons φ and ϕ vanish, leaving one with only

ϕ̃. The constraint on a implies bc = 2 which, as discussed in section 3, gives rise to the

Reissner-Nordström black hole.

For the type 2 deformations there are more possibilities to eliminate the dilaton φ. It

can be achieved by requiring a = 0, as we did for the uplift to black holes. For general p,

this leads to the following constraint on b:

b =

√

2(p+ 1)(D − 2)

D + p− 1
. (5.8)

Note that this yields bc = 2 for black holes with p = 0. For these values of b, the instanton

solution (3.7) can be uplifted to regular non-extremal non-dilatonic p-branes. For higher

values of b, the instanton solution uplifts to singular non-extremal dilatonic p-branes. For

15This seems to indicate a generalisation of the non-extremal deformations with both X 6= 0 and f 6= 0,

reducing to a three-dilaton instanton.
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these solutions to become regular, one must take either q2 → 0 or q− → 0, exactly like we

found in the bc > 2 discussion of section 4.3.

The uplift of the SL(2,R) instanton solution (3.7) to p-branes16 is therefore very similar

to the uplift to black holes. There is one value of b (5.8) for which the instanton solution

can be uplifted to a regular non-extremal non-dilatonic p-brane of type 2. For higher values

of b one can obtain singular non-extremal dilatonic p-branes of type 2, which only become

regular on either of the limits q2 → 0 and q− → 0. By adding an extra dilaton to the

instanton solution one can also connect to the regular type 1 and type 2 non-extremal

dilatonic p-branes.

6. Instantons

In the previous section we focused on the bulk behavior of the three conjugacy classes of

instanton-like solutions. In this section we will investigate which of these solutions can be

interpreted as instantons. Instantons are defined to be solutions to the euclidean equations

of motion with finite, non-zero value of the action. They sometimes have a tunneling

interpretation, but more generically, they contribute to certain correlation functions in

the path integral, with terms that are exponentially suppressed by the instanton action.

These correlation functions then induce new interactions in the effective action, and for

the extremal, 1/2 BPS, D-instantons in type-IIB in D = 10, these effects are captured by

certain SL(2,Z) modular functions that multiply higher derivative terms like R4 and their

superpartners [5]. Before we study correlation functions and effective interactions induced

by non-extremal D-instantons, we must first discuss the properties and show the finiteness

of the non-extremal instanton action. We will do this in such a way that the special case

of extremal D-instantons can easily be recovered.

6.1 Instanton action

The first thing we notice is that the action (3.1), evaluated on any solution of (3.4) vanishes.

What is also bothersome about the euclidean action (3.1) is that it is not bounded from

below, not even in the scalar sector. Such actions cannot be used for a semiclassical

approximation in the path integral, since fluctuations around the instanton will diverge.

This problem can be solved by adding boundary terms that guarantee a positive definite

action for the scalars, yielding at the same time a nonzero value for the instanton action.

These boundary terms can be understood as coming from dualising the magnetic nine-form

into the axion field χ [4, 5], subject to appropriate boundary conditions for the fields and

their variations. This dual formulation has a manifestly positive definite action (apart

from the usual problems with the Einstein-Hilbert term), in which it is easy to derive

a Bogomol’nyi bound and therefore, the semiclassical approximation is justified. This

procedure was also demonstrated in lower dimensions in [29].

16General worldvolume reductions of p-branes leading to an axion-dilaton system with SL(2,R) symmetry

have been considered in [26].
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The action for the dilaton and the “magnetic” (D − 1)-form, dual to the axion χ, can

be written as [5]

SE =

∫

M

1

2
[(dφ ∧ ∗dφ+ e−bφFD−1 ∧ ∗FD−1)] , (6.1)

supplemented by the constraint that FD−1 is closed. Notice that in this formalism, the

SL(2,R) symmetry is not manifest.

We can dualise back to the dilaton-axion system by introducing a Lagrange multiplier χ

that enforces the Bianchi-identity for FD−1, i.e. Lmult = −χdFD−1. If we now algebraically

eliminate FD−1 from the action by treating it as a fundamental field (as opposed to treating

it as a field strength) and using its equation of motion,

FD−1 = −ebφ ∗ dχ , (6.2)

we obtain the euclidean action (3.1) in terms of the axion χ plus the boundary term

mentioned above.

It is now easy to show that this action satisfies a Bogomol’nyi bound [5]. Using the

fact that, in a euclidean space, ∗ ∗Ap = (−)(D−1)pAp, where Ap is a p-form, we can rewrite

the action as follows:

SE =

∫

M

1

2

[

(dφ± e−bφ/2 ∗FD−1)∧ ∗(dφ± e−bφ/2 ∗FD−1)∓ (−)D 4

b
d(e−bφ/2FD−1)

]

, (6.3)

where we have used the fact that dFD−1 = 0. Since the first term is positive semi-definite

SE is bounded from below by a topological surface term given by the last term in (6.3).

The bound is saturated when the Bogomol’nyi equation

∗FD−1 = ∓ebφ/2dφ , (6.4)

is satisfied. The ∓ distinguishes instantons from anti-instantons, and for simplicity, we will

use the upper sign from now on. Using (6.2), one can write the Bogomol’nyi equation as

dχ = −e−bφ/2dφ , (6.5)

and one can check explicitly that the instanton solutions with q2 = 0, given in (3.24),

satisfy this bound. They are therefore rightfully called extremal. The instanton action can

then easily be evaluated, and has only a contribution from the boundary at infinity,

S∞inst =
4

b2
(D − 2)Vol(SD−1)

|bcq−|
g
b/2
s

, (6.6)

while the contribution from r = 0 vanishes.

For D = 10 and b = 2, this value of the instanton action precisely coincides with [4].

For other values of b, we notice the dependence of gs on b. In ten dimensions, the only

possible value for b compatible with maximal supersymmetry is b = 2. One then finds that

the instanton action depends linearly on the inverse string coupling constant. In lower

dimensions this is not necessarily so, and more values for b are possible, depending on

whether χ comes from the RR sector or from the NS sector. This would imply different
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kinds of instanton effects, with instanton actions that depend on different powers of the

string coupling constant. This indeed happens for instance in four dimensions, after com-

pactifying type-IIA strings on a Calabi-Yau threefold. There are D-instantons coming from

wrapping (euclidean) D2 branes around a supersymmetric three-cycle, and there are NS5-

brane instantons coming from wrapping the NS5-brane around the entire Calabi-Yau. As

explained in [30], such instanton effects are weighted with different powers of gs in the in-

stanton action. This was also explicitly demonstrated in [29, 31, 32]. In our notation, they

correspond to b = 2 and b = 4. Our results in (6.6) are consistent with these observations.

Notice also that the instanton action is proportional to q−. For extremal instantons,

this is precisely the mass of the corresponding black hole in one dimension higher, see (4.15).

This is a generic characteristic of the instanton-soliton correspondence that we know from

field theories. There, the euclidean action in D dimensions equals the hamiltonian in D+1

dimensions, and the instanton action equals the soliton mass. It is interesting to see that

this also happens for theories with gravity.

We now turn to the case of non-extremal instantons, and focus first on the case of

q2 > 0. The solutions (3.16) for the dilaton and axion fields can be written as

dφ =
2

b
coth(H + C1)dH , e−bφ/2FD−1 =

2

b

∗dH
sinh(H + C1)

, (6.7)

and do not satisfy the Bogomol’nyi equation (6.4). To evaluate the action on this non-

extremal instanton solution, we plug in these expressions into the bulk action (6.1), and

find

Sinst =
2

b2

∫

d
(

{H − 2 coth(H + C1)} ∗ dH
)

, (6.8)

which is again a total derivative term. Using Stokes theorem, we therefore only pick up

contributions from the boundaries. Since the q2 > 0 instantons have a curvature singularity

at r = rc (see section 3.1), one can take these boundaries at r =∞ and at r = rc. In terms

of the variable H, this corresponds to H = 0 and H =∞ respectively.17 We remind again

that we have taken C1 to be positive, in order to avoid further singularities in the scalar

sector when H + C1 = 0.

Evaluating the Einstein-Hilbert term on the solution in (3.16) we find the following:

−
∫

M

R = − 2

b2

∫

M

d(H ∗ dH) , (6.9)

which precisely cancels the first term of the scalar action (6.8). Strictly speaking, both

these terms diverge at the boundary r = rc as one can show, and need to be regularized. For

the Einstein-Hilbert term, this needs to be done in combination with the Gibbons-Hawking

term [33],

SEH = −
(∫

M

R+ 2

∫

∂M
(K −K0)

)

, (6.10)

where M is the D-dimensional euclidean space and ∂M is the boundary. In the second

term, K is the trace of the extrinsic curvature of the boundary and K0 the extrinsic

17Without loss of generality, we can choose q > 0.
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curvature one would find for flat space, which is subtracted to normalise the value of the

action. One can check that from the boundary at r =∞, there is no contribution to (6.10).

At r = rc, the metric has a curvature singularity and the dilaton blows up; therefore the

supergravity approximation breaks down. One would have to rely on higher order string

theory corrections to regularize the contribution from rc. Whatever the precise contribution

is, we remark that the gravitational action (6.10) is an SL(2,R) invariant, independent of

the string coupling constant. It can therefore only be a function of q2.

If we assume that the regularization is such that there is still a cancellation with

the first term in (6.8), we only have contributions coming from the second terms of both

integrals (6.8) and (6.10). We first discuss the boundary at r = ∞. The contribution

from (6.10) vanishes, while (6.8) yields a contribution

S∞inst =
4

b2
(D − 2)Vol(SD−1) b c (q cothC1) ,

=
4

b2
(D − 2)Vol(SD−1) b c





√

q2 +
q2
−

gbs



 . (6.11)

In the second line, we have used the relation between C1 and the asymptotic value of the

dilaton, gbs = (q−/q)
2 sinh2C1.

For q2 = 0, (6.11) precisely yields back the result for the extremal instanton, see (6.6).

There we made the relation between the instanton action and the black hole mass in one

dimension higher. Also for the non-extremal instanton, such a relation seems to holds.

Indeed, from the mass formula for the non-extremal black hole in terms of the instanton

parameters, one has that q cothC1 =
√

q2 + q2
−, and the string coupling constant is set to

unity. One therefore sees that the contribution to the instanton action from the boundary

at infinity is proportional to the black hole mass in one dimension higher.

The boundary at r = rc receives contributions from both integrals (6.8) and (6.10),

which add up to

Src

inst =
4

b2
(D − 2)Vol(SD−1) b c

(

q

(

bc

2
− 1

))

. (6.12)

Note that this contribution vanishes for the case bc = 2, while it is positive for bc >

2. However, as discussed above, it is not at all clear whether this contribution to the

integrals (6.8) and (6.10) should be included in the instanton action, since it is calculated

in a region of space where the supergravity approximation is no longer valid. It might well

be that string corrections smooth out the singularity at r = rc, leaving one with only the

contribution (6.11) from r = r∞.

We now turn to the case of q2 < 0, or with q = iq̃, a positive q̃2 > 0. A similar

calculation as for q2 > 0 shows that, for the solution (3.28), we have

dφ =
2

b
cot(H̃ + C̃1)dH̃ , e−bφ/2FD−1 =

2

b

∗dH̃
sin(H̃ + C̃1)

, (6.13)

where

H̃ = bc arctan

(

q̃

rD−2

)

, (6.14)
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is a harmonic function over the geometry given by the metric in (3.28). Plugging in these

expressions into the bulk action (6.1), we find

Sinst = −
2

b2

∫

d
(

{H̃ + 2 cot(H̃ + C̃1)} ∗ dH̃
)

. (6.15)

Since this is a total derivative, we can use Stokes theorem again to reduce it to an integral

over the boundaries. These boundaries are at r = ∞ and r = 0, where we required that

bc < 2, as discussed in section 3.1. In contrast to the discussion of the r = rc boundary

for q2 > 0, the instanton solution is perfectly regular everywhere, in particular at both

boundaries. Therefore the contribution from the boundary at r = 0 can also be trusted.

In addition to the above action, one also needs to include the gravitational contri-

bution (6.10). Similar to the case of q2 > 0, the first term of (6.15) is cancelled by the

contribution from the Ricci scalar. We anticipate the Gibbons-Hawking term not to con-

tribute, since the two asymptotic geometries at r = 0 and r =∞ are equivalent due to the

Z2-symmetry (4.18) and therefore their contributions should cancel.

Therefore the q2 < 0 instanton action has contributions only from the second term

of (6.15) from both boundaries at r = 0 and r =∞:

S∞inst =
4

b2
(D − 2)Vol(SD−1) b c q̃

(

cot C̃1

)

,

S0
inst =

4

b2
(D − 2)Vol(SD−1) b c q̃

(

− cot

(

C̃1 + bc
π

2

))

. (6.16)

Due to the fact that C̃1 and C̃1 + bcπ/2 are on the same branch of the cotangent (due to

the restriction of regular scalars for 0 < r <∞, which can only be achieved for bc < 2, see

section 3.1), the total instanton action is manifestly positive definite. In the neighborhood

of bc ≈ 2, the instanton action becomes very large, and the limit to the extremal point

where bc = 2, is discontinuous. This shows that this instanton is completely disconnected

from the extremal D-instanton.

Using the asymptotic value of the dilaton in (3.28), we have gbs = (q−/q̃)
2 sin2 C̃1, and

therefore q̃2 < q2
−/g

b
s. Assuming that cot C̃1 > 0, the contribution from infinity is positive

and can be rewritten as

S∞inst =
4

b2
(D − 2)Vol(SD−1) b c

√

q2
−

gbs
− q̃2 , (6.17)

which is the analytic continuation of the result with q2 > 0.

6.2 Correlation functions

Once the instanton solutions are established, one studies their effect in the path integral.

As for D-instantons in ten-dimensional IIB, they contribute to certain correlation functions

via the insertion of fermionic zero modes. For the D-instanton, which is 1/2 BPS, there

are sixteen fermionic zero modes. These are solutions for the fluctuations that satisfy the

linearised Dirac equation in the presence of the instanton. All of these zero modes can

be generated by acting with the broken supersymmetries on the purely bosonic instanton
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solution. For the non-extremal instantons, no supersymmetries are preserved, so there

are more fermionic zero modes. Let us focus for simplicity on ten-dimensional type-IIB.

Since all the supercharges are broken, one can generate 32 fermionic zero modes. The path

integral measure contains an integration over these fermionic collective coordinates, and

to have a non-vanishing result, one must therefore insert 32 dilatinos in the path integral.

Based on this counting argument of fermionic zero modes, a 32-point correlator of dilatinos

would be non-zero, and induce new terms in the effective action, containing 32 dilatinos.

In the full effective action, such terms are related to higher curvature terms like e.g. certain

contractions of R8. An explicit instanton calculation should be done to determine the non-

perturbative contribution to the function that multiplies R8. As for the D-instanton, we

expect that the contributions of the instantons with different q2-values build up a modular

form with respect to SL(2,Z), possibly after integrating over q2.

These issues, though important, lie beyond the scope of this paper, and are left for

further investigation.

7. Discussion

In this paper we investigated non-extremal instantons in string theory that are solutions of

a gravity-dilaton-axion system with dilaton coupling parameter b. In particular, we con-

structed an SL(2,R) family of radially symmetric instanton-like solutions in all conjugacy

classes labelled by q2. Among these is the (anti-)D-instanton solution with q2 = 0. For

special values of the dilaton coupling parameter this solution is half-supersymmetric. The

instanton solutions in the other two conjugacy classes, with q2 > 0 and q2 < 0, are non-

supersymmetric and can be viewed as the non-extremal version of the (anti-)D-instanton.

This view is confirmed by the property that instantons in these two conjugacy classes, for

bc ≥ 2 with c defined in (3.9), can be uplifted to non-extremal black holes.

We stressed the wormhole nature of the instanton solutions. We found that each

conjugacy class leads to a wormhole geometry provided the corresponding instanton is

given in a particular metric frame:

q2 > 0 ↔ dual frame metric (only for bc = 2 or q− = 0)

q2 = 0 ↔ string frame metric

q2 < 0 ↔ Einstein frame metric . (7.1)

For all these case the metric takes the form (3.29), with the specific values given in sec-

tion 3.2.

Not all instanton solutions we constructed are regular and not all can be uplifted to

black holes. The non-extremal instantons in the q2 > 0 conjugacy class all have a curvature

singularity at r = rc, see (3.18). Only the bc = 2 instanton can be uplifted to a regular non-

extremal RN black hole with the singularity being resolved as a coordinate singularity at

the outer event horizon of the RN black hole. The singularity remains for bc > 2 and in that

case can be resolved by adding an extra dilaton to the original system [21]. Two exceptions

are the limits q2 → 0 or q− → 0, which correspond to the extremal and Schwarzschild black
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bc Dimension Regular solutions

< 2 D Instantons with q2 ≤ 0, see (3.28)

= 2 D + 1 RN black holes with q2 ≥ 0, see (4.11), or

Schwarzschild black holes with q2 > 0, q− = 0

> 2 D + 1 Dilatonic black holes with q2 = 0 or

Schwarzschild black holes with q2 > 0, q− = 0

= in (7.2) D + p+ 1 Non-dilatonic p-branes with q2 ≥ 0

> in (7.2) D + p+ 1 Dilatonic p-branes with q2 = 0 or

q2 > 0, q− = 0

Table 1: The regular instanton, black hole and p-brane solutions that are obtained, depending on

the dilaton coupling parameter b, the conjugacy class q2 and the charge q
−
.

hole solutions, respectively. Finally, the instantons in the q2 < 0 conjugacy class are only

regular for bc < 2. These instantons can never be uplifted to black holes.

We have also considered the uplift of our instanton solutions to p-branes. It turns out

that an instanton can only be uplifted over a (p+1)-torus to a p-brane provided the dilaton

coupling satisfies (following from (5.8))

b c ≥
√

4(p+ 1)(D − 1)

D + p− 1
. (7.2)

For the case that saturates this bound, the instanton with q2 ≥ 0 uplifts to a regular non-

dilatonic p-brane. For larger values of b, the instanton solution (3.7) with q2 > 0 uplifts

to a singular limit of the dilatonic p-branes of [24]. These solutions only become regular

in the limit q2 → 0 or q− → 0. A summary of the possible regular solutions is given in

table 1. Alternatively, we have discussed the possibility of adding an extra dilaton to the

instanton solution [21], which allows for the uplift to the regular dilatonic p-branes of both

type 1 and type 2.

For the particular value b = 2, corresponding to ∆ = 4, there is another higher-

dimensional origin. In this special case, the D-dimensional extremal instanton can be

uplifted to a gravitational wave in D+2 dimensions [8]. Similarly, the other two conjugacy

classes uplift to purely gravitational solutions in D + 2 dimensions which we denominate

“non-extremal waves”. The terminology is slightly misleading since the uplift only leads to

a time-independent solution. Whether this solution can be extended to a time-dependent

wave-like solution remains to be seen. It is also interesting to note the following curiosity.

The source term for a pp-wave is a massless particle, i.e. a particle with a null-momentum

vector: p2 = 0. It is suggestive to associate the source terms for the other two conjugacy

classes with massive particles (p2 > 0) and tachyonic particles (p2 < 0). We leave this for

a future investigation.

In the second part of this paper we investigated the possibility whether the non-

extremal instantons might contribute to certain correlation functions in string theory. For
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this application it is a prerequisite that there is a well-defined and finite instanton action.

Mimicking the calculation of the standard D-instanton action we found that for q2 > 0

the contribution from infinity to the instanton action, for all values of b, is given by the

elegant formula (6.11). This action reduces to the standard D-instanton action for q2 = 0.

Having a finite action, the non-extremal instantons might contribute to certain correlation

functions. In the case of type-IIB string theory we conjectured that non-extremal instantons

contribute to the R8 terms in the string effective action in the same way that the extremal

D-instantons contribute to the R4 terms in the same action. Whether the fact that all

supersymmetries are broken by the non-extremal instantons poses problems remains to be

seen. An explicit instanton calculation should decide whether our conjecture is correct.

This and related issues we leave for future investigation.
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