63 research outputs found

    Hexabromocyclododecanes (HBCDs) in the environment and humans: A review

    Get PDF
    Hexabromocyclododecanes (HBCDs) are brominated aliphatic cyclic hydrocarbons used as flame retardants in thermal insulation building materials, upholstery textiles, and electronics. As a result of their widespread use and their physical and chemical properties, HBCDs are now ubiquitous contaminants in the environment and humans. This review summarizes HBCD concentrations in several environmental compartments and analyzes these data in terms of point sources versus diffuse sources, biomagnification potential, stereoisomer profiles, time trends, and global distribution. Generally, higher concentrations were measured in samples (air, sediment, and fish) collected near point sources (plants producing or processing HBCDs), while lower concentrations were recorded in samples from locations with no obvious sources of HBCDs. High concentrations were measured in top predators, such as marine mammals and birds of prey (up to 9600 and 19 200 ng/g lipid weight, respectively), suggesting a biomagnification potential for HBCDs. Relatively low HBCD concentrations were reported in the few human studies conducted to date (median values varied between 0.35 and 1.1 ng/g lipid weight). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. One important observation is the shift from the high percentage of the gamma-HBCD stereoisomer in the technical products to a dominance of the alpha-HBCD stereoisomer in biological samples. A combination of factors such as variations in solubility, partitioning behavior, uptake, and, possibly, selective metabolism of individual isomers may explain the observed changes in stereoisomer patterns. Recommendations for further work include research on how HBCDs are transferred from products into the environment upon production, use, and disposal. Time trends need to be analyzed more in detail, including HBCD stereoisomers, and more data on terrestrial organisms are needed, especially for humans. Whenever possible, HBCDs should be analyzed as individual stereoisomers in order to address their fate and effects

    Trends in Environmental Analysis

    Full text link

    Dust Measurement of Two Organophosphorus Flame Retardants, Resorcinol Bis(diphenylphosphate) (RBDPP) and Bisphenol A Bis(diphenylphosphate) (BPA-BDPP), Used as Alternatives for BDE-209

    No full text
    Resorcinol bis(diphenylphosphate) (RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) are two halogen-free organophosphorus flame retardant (PFRs) that are used as an alternative for the decabromodiphenyl ether (Deca-BDE) technical mixture in TV/flatscreen housing and other electronic consumer products. In this study, dust samples were collected from various microenvironments in The Netherlands (houses, cars), Greece (houses), and Sweden (apartments, cars, furniture stores, electronics stores) and analyzed for RBDPP and BPA-BDPP. Additionally, the dust samples from The Netherlands were analyzed for decabromodiphenyl ether (BDE-209) for comparison and for TPHP, which is a byproduct in the RBDPP and BPA-BDPP technical products. BPA-BDPP was detected in almost all dust samples from The Netherlands, Greece, and Sweden. Highest concentrations were found in dust samples collected on electronic equipment from all three countries with BPA-BDPP levels ranging from <0.1 to 1300 μg/g and RBDPP levels from <0.04 to 520 μg/g. RBDPP and BPA-BDPP levels in dust collected further away from the electronics (source) were usually lower. BDE-209 levels in The Netherlands dust samples collected on and around the electronics were similar and much lower than the BPA-BDPP/RBDPP levels, indicating that the electronics were not the source of BDE-209. Strong positive correlations were found between TPHP concentrations and those of RBDPP (r = 0.805) and BPA-BDPP (r = 0.924), probably due to TPHP being a byproduct in commercial RBDPP and BPA-BDPP mixtures in electronics. To our knowledge, this is the first time that RBDPP and BPA-BDPP were detected in dust samples from Europe. © 2013 American Chemical Society
    corecore