164 research outputs found
Recommended from our members
Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum – a model study
ine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas.
The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results.
The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation
Efficiency at maximum power: An analytically solvable model for stochastic heat engines
We study a class of cyclic Brownian heat engines in the framework of
finite-time thermodynamics. For infinitely long cycle times, the engine works
at the Carnot efficiency limit producing, however, zero power. For the
efficiency at maximum power, we find a universal expression, different from the
endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a
simple one-dimensional engine working in and with a time-dependent harmonic
potential.Comment: 6 pages, 3 figure
Interaction of molecular motors can enhance their efficiency
Particles moving in oscillating potential with broken mirror symmetry are
considered. We calculate their energetic efficiency, when acting as molecular
motors carrying a load against external force. It is shown that interaction
between particles enhances the efficiency in wide range of parameters. Possible
consequences for artificial molecular motors are discussed.Comment: 6 pages, 8 figure
A minimal model of an autonomous thermal motor
We consider a model of a Brownian motor composed of two coupled overdamped
degrees of freedom moving in periodic potentials and driven by two heat
reservoirs. This model exhibits a spontaneous breaking of symmetry and gives
rise to directed transport in the case of a non- vanishing interparticle
interaction strength. For strong coupling between the particles we derive an
expression for the propagation velocity valid for arbitrary periodic
potentials. In the limit of strong coupling the model is equivalent to the
B\"uttiker-Landauer model [1-3] for a single particle diffusing in an
environment with position dependent temperature. By using numerical
calculations of the Fokker-Planck equation and simulations of the Langevin
equations we study the model for arbitrary coupling, retrieving many features
of the strong coupling limit. In particular, directed transport emerges even
for symmetric potentials. For distinct heat reservoirs the heat currents are
well-defined quantities allowing a study of the motor efficiency. We show that
the optimal working regime occurs for moderate coupling. Finally, we introduce
a model with discrete phase space which captures the essential features of the
continuous model, can be solved in the limit of weak coupling, and exhibits a
larger efficiency than the continuous counterpart.Comment: Revised version. Extended discussion on the discrete model. To appear
in EP
Optimal protocols for Hamiltonian and Schr\"odinger dynamics
For systems in an externally controllable time-dependent potential, the
optimal protocol minimizes the mean work spent in a finite-time transition
between given initial and final values of a control parameter. For an initially
thermalized ensemble, we consider both Hamiltonian evolution for classical
systems and Schr\"odinger evolution for quantum systems. In both cases, we show
that for harmonic potentials, the optimal work is given by the adiabatic work
even in the limit of short transition times. This result is counter-intuitive
because the adiabatic work is substantially smaller than the work for an
instantaneous jump. We also perform numerical calculations of the optimal
protocol for Hamiltonian dynamics in an anharmonic quartic potential. For a
two-level spin system, we give examples where the adiabatic work can be reached
in either a finite or an arbitrarily short transition time depending on the
allowed parameter space.Comment: submitted to J. Stat. Mech.: Theor. Exp
Efficiency of Free Energy Transduction in Autonomous Systems
We consider the thermodynamics of chemical coupling from the viewpoint of
free energy transduction efficiency. In contrast to an external
parameter-driven stochastic energetics setup, the dynamic change of the
equilibrium distribution induced by chemical coupling, adopted, for example, in
biological systems, is inevitably an autonomous process. We found that the
efficiency is bounded by the ratio between the non-symmetric and the
symmetrized Kullback-Leibler distance, which is significantly lower than unity.
Consequences of this low efficiency are demonstrated in the simple two-state
case, which serves as an important minimal model for studying the energetics of
biomolecules.Comment: 4 pages, 4 figure
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Bounds of efficiency at maximum power for linear, superlinear and sublinear irreversible Carnot-like heat engines
The efficiency at maximum power (EMP) of irreversible Carnot-like heat
engines is investigated based on the weak endoreversible assumption and the
phenomenologically irreversible thermodynamics. It is found that the weak
endoreversible assumption can reduce to the conventional one for the heat
engines working at maximum power. Carnot-like heat engines are classified into
three types (linear, superlinear, and sublinear) according to different
characteristics of constitutive relations between the heat transfer rate and
the thermodynamic force. The EMPs of Carnot-like heat engines are proved to be
bounded between and for the linear type, 0 and
for the superlinear type, and and for
the sublinear type, respectively, where is the Carnot efficiency.Comment: 6 journal pages, 1 figure, EPL (in press
Entropy production for mechanically or chemically driven biomolecules
Entropy production along a single stochastic trajectory of a biomolecule is
discussed for two different sources of non-equilibrium. For a molecule
manipulated mechanically by an AFM or an optical tweezer, entropy production
(or annihilation) occurs in the molecular conformation proper or in the
surrounding medium. Within a Langevin dynamics, a unique identification of
these two contributions is possible. The total entropy change obeys an integral
fluctuation theorem and a class of further exact relations, which we prove for
arbitrarily coupled slow degrees of freedom including hydrodynamic
interactions. These theoretical results can therefore also be applied to driven
colloidal systems. For transitions between different internal conformations of
a biomolecule involving unbalanced chemical reactions, we provide a
thermodynamically consistent formulation and identify again the two sources of
entropy production, which obey similar exact relations. We clarify the
particular role degenerate states have in such a description
Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors
The efficiency at maximum power (EMP) for tight-coupling molecular motors is
investigated within the framework of irreversible thermodynamics. It is found
that the EMP depends merely on the constitutive relation between the
thermodynamic current and force. The motors are classified into four generic
types (linear, superlinear, sublinear, and mixed types) according to the
characteristics of the constitutive relation, and then the corresponding ranges
of the EMP for these four types of molecular motors are obtained. The exact
bounds of the EMP are derived and expressed as the explicit functions of the
free energy released by the fuel in each motor step. A phase diagram is
constructed which clearly shows how the region where the parameters (the load
distribution factor and the free energy released by the fuel in each motor
step) are located can determine whether the value of the EMP is larger or
smaller than 1/2. This phase diagram reveals that motors using ATP as fuel
under physiological conditions can work at maximum power with higher efficiency
() for a small load distribution factor ().Comment: 5 pages, 4 figure
- …