60 research outputs found

    Power-law velocity distributions in granular gases

    Full text link
    We report a general class of steady and transient states of granular gases. We find that the kinetic theory of inelastic gases admits stationary solutions with a power-law velocity distribution, f(v) ~ v^(-sigma). The exponent sigma is found analytically and depends on the spatial dimension, the degree of inelasticity, and the homogeneity degree of the collision rate. Driven steady-states, with the same power-law tail and a cut-off can be maintained by injecting energy at a large velocity scale, which then cascades to smaller velocities where it is dissipated. Associated with these steady-states are freely cooling time-dependent states for which the cut-off decreases and the velocity distribution is self-similar.Comment: 11 pages, 9 figure

    Size Segregation of Granular Matter in Silo Discharges

    Full text link
    We present an experimental study of segregation of granular matter in a quasi-two dimensional silo emptying out of an orifice. Size separation is observed when multi-sized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bi-disperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bi-disperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.Comment: 6 pages, 10 figures (gif format), postscript version at http://physics.clarku.edu/~akudrolli/nls.htm

    Dissociable contributions of the prefrontal cortex in group-based cooperation

    Get PDF
    © The Author(s) (2018). Published by Oxford University Press. The success of our political institutions, environmental stewardship and evolutionary fitness all hinge on our ability to prioritize collective-interest over self-interest. Despite considerable interest in the neuro-cognitive processes that underlie group cooperation, the evidence to date is inconsistent. Several papers support models of prosocial restraint, while more recent work supports models of prosocial intuition.We evaluate these competing models using a sample of lesion patients with damage to brain regions previously implicated in intuition and deliberation. Compared to matched control participants (brain damaged and healthy controls), we found that patients with dorsolateral prefrontal cortex (dlPFC) damage were less likely to cooperate in a modified public goods game, whereas patients with ventromedial prefrontal cortex (vmPFC) damage were more likely to cooperate. In contrast, we observed no association between cooperation and amygdala damage relative to controls. These findings suggest that the dlPFC, rather than the vmPFC or amygdala, plays a necessary role in groupbased cooperation. These findings suggest cooperation does not solely rely on intuitive processes. Implications for models of group cooperation are discussed

    A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver

    Get PDF
    Background: In general, immune effector molecules are induced by infection. Methodology and Principal Findings: However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNc. Constitutive and IFNc-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 59 exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. Conclusions and Significance: The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed

    Reconstruction of cellular variability from spatiotemporal patterns of Dictyostelium discoideum

    Get PDF
    Variability in cell properties can be an important driving mechanism behind spatiotemporal patterns in biological systems, as the degree of cell-to-cell differences determines the capacity of cells to locally synchronize and, consequently, form patterns on a larger spatial scale. In principle, certain features of spatial patterns emerging with time may be regulated by variability or, more specifically, by certain constellations of cell-to-cell differences. Similarly, measuring variability in a system (i.e. the spatial distribution of cell-cell differences) may help predict properties of later-stage patterns

    An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics

    Get PDF
    Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable Cortex and Memory (EC&M) model for understanding the alternating, zig-zag extension of pseudopods. Incorporating elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex temporarily more excitable – thus creating a memory of previous pseudopod locations – the model reproduces experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods. The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions for new research regarding the molecular mechanisms underlying directional persistence
    • …
    corecore