8,481 research outputs found

    Perturbative Study of Bremsstrahlung and Pair-Production by Spin-1/2 Particles in the Aharonov-Bohm Potential

    Full text link
    In the presence of an external Aharonov-Bohm potential, we investigate the two QED processes of the emission of a bremsstrahlung photon by an electron, and the production of an electron-positron pair by a single photon. Calculations are carried out using the Born approximation within the framework of covariant perturbation theory to lowest non-vanishing order in \alpha. The matrix element for each process is derived, and the corresponding differential cross-section is calculated. In the non-relativistic limit, the resulting angular and spectral distributions and some polarization properties are considered, and compared to results of previous works.Comment: 15 pages, RevTex 4, 2 figures, submitted for publicatio

    Aspects of higher curvature terms and U-duality

    Full text link
    We discuss various aspects of dimensional reduction of gravity with the Einstein-Hilbert action supplemented by a lowest order deformation formed as the Riemann tensor raised to powers two, three or four. In the case of R^2 we give an explicit expression, and discuss the possibility of extended coset symmetries, especially SL(n+1,Z) for reduction on an n-torus to three dimensions. Then we start an investigation of the dimensional reduction of R^3 and R^4 by calculating some terms relevant for the coset formulation, aiming in particular towards E_8(8)/(Spin(16)/Z_2) in three dimensions and an investigation of the derivative structure. We emphasise some issues concerning the need for the introduction of non-scalar automorphic forms in order to realise certain expected enhanced symmetries.Comment: 26 pp., 15 figs., plain te

    Fractional transport equations for Levy stable processes

    Full text link
    The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a Brownian system subjected to a Levy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limit of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the fractional character acquired by the position in the Smoluchowski equation follows from the fractional character of the momentum in the Klein-Kramers equation. Connections among fractional transport equations recently proposed are clarified.Comment: 4 page

    Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?

    Full text link
    We study a model Dyson-Schwinger equation for the quark propagator closed using an {\it Ansatz} for the gluon propagator of the form \mbox{D(q)q2/[(q2)2+b4]D(q) \sim q^2/[(q^2)^2 + b^4]} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. Using the quark condensate as an order parameter, we find that there is a critical value of b=bcb=b_c such that the model does not support dynamical chiral symmetry breaking for b>bcb>b_c. We discuss and apply a confinement test which suggests that, for all values of bb, the quark propagator in the model {\bf is not} confining. Together these results suggest that this Ansatz for the gluon propagator is inadequate as a model since it does not yield the expected behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133, ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.

    Onset of Delocalization in Quasi-1D Waveguides with Correlated Surface Disorder

    Full text link
    We present first analytical results on transport properties of many-mode waveguides with rough surfaces having long-range correlations. We show that propagation of waves through such waveguides reveals a quite unexpected phenomena of a complete transparency for a subset of propagating modes. These modes do not interact with each other and effectively can be described by the theory of 1D transport with correlated disorder. We also found that with a proper choice of model parameters one can arrange a perfect transparency of waveguides inside a given window of energy of incoming waves. The results may be important in view of experimental realizations of a selective transport in application to both waveguides and electron/optic nanodevices.Comment: RevTex, 4 pages, no figures, few references are adde

    Isospin Dependence of Power Corrections in Deep Inelastic Scattering

    Full text link
    We present results of a perturbative QCD analysis of deep inelastic measurements of both the deuteron and proton structure functions. We evaluate the theoretical uncertainty associated to nuclear effects in the deuteron, and we extract simultaneously the isospin depedendence of: i)the higher twists terms; ii) the ratio of the longitudinal to transverse cross sections; iii) the ratio of the neutron to proton structure functions. The extraction of the latter, in particular, has been at the center of an intense debate. Its accurate determination is crucial both theoretically and for the interpretation of the more precise neutrino experiments including the newly planned high intensity 50 GeV proton synchrotron.Comment: 33 pages, 16 figure

    Periodic and Aperiodic Bunching in the Addition Spectra of Quantum Dot

    Full text link
    We study electron addition spectra of quantum dots in a broad range of electron occupancies starting from the first electron. Spectra for dots containing <200 electrons reveal a surprising feature. Electron additions are not evenly spaced in gate voltage. Rather, they group into bunches. With increasing electron number the bunching evolves from occurring randomly to periodically at about every fifth electron. The periodicity of the bunching and features in electron tunneling rates suggest that the bunching is associated with electron additions into spatially distinct regions within the dots.Comment: 4 pages, 2 figures. Submitted to PR

    Asymptotic Improvement of Resummation and Perturbative Predictions in Quantum Field Theory

    Full text link
    The improvement of resummation algorithms for divergent perturbative expansions in quantum field theory by asymptotic information about perturbative coefficients is investigated. Various asymptotically optimized resummation prescriptions are considered. The improvement of perturbative predictions beyond the reexpansion of rational approximants is discussed.Comment: 21 pages, LaTeX, 3 tables; title shortened; typographical errors corrected; minor changes of style; 2 references adde

    Full potential LAPW calculation of electron momentum density and related properties of Li

    Full text link
    Electron momentum density and Compton profiles in Lithium along ,, , and directions are calculated using Full-Potential Linear Augmented Plane Wave basis within generalized gradient approximation. The profiles have been corrected for correlations with Lam-Platzman formulation using self-consistent charge density. The first and second derivatives of Compton profiles are studied to investigate the Fermi surface breaks. Decent agreement is observed between recent experimental and our calculated values. Our values for the derivatives are found to be in better agreement with experiments than earlier theoretical results. Two-photon momentum density and one- and two-dimensional angular correlation of positron annihilation radiation are also calculated within the same formalism and including the electron-positron enhancement factor.Comment: 11 pages, 7 figures TO appear in Physical Review

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
    corecore