2,835 research outputs found

    beta-Cu2V2O7: a spin-1/2 honeycomb lattice system

    Full text link
    We report on band structure calculations and a microscopic model of the low-dimensional magnet beta-Cu2V2O7. Magnetic properties of this compound can be described by a spin-1/2 anisotropic honeycomb lattice model with the averaged coupling \bar J1=60-66 K. The low symmetry of the crystal structure leads to two inequivalent couplings J1 and J1', but this weak spatial anisotropy does not affect the essential physics of the honeycomb spin lattice. The structural realization of the honeycomb lattice is highly non-trivial: the leading interactions J1 and J1' run via double bridges of VO4 tetrahedra between spatially separated Cu atoms, while the interactions between structural nearest neighbors are negligible. The non-negligible inter-plane coupling Jperp~15 K gives rise to the long-range magnetic ordering at TN~26 K. Our model simulations improve the fit of the magnetic susceptibility data, compared to the previously assumed spin-chain models. Additionally, the simulated ordering temperature of 27 K is in remarkable agreement with the experiment. Our study evaluates beta-Cu2V2O7 as the best available experimental realization of the spin-1/2 Heisenberg model on the honeycomb lattice. We also provide an instructive comparison of different band structure codes and computational approaches to the evaluation of exchange couplings in magnetic insulators.Comment: 11 pages, 10 figures, 2 tables: revised version, extended description of simulation result

    Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te

    Full text link
    A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. In this study we show that such an electronic topological transition is at the basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe1.08_{1.08}Te. Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground-state of Fe1.08_{1.08}Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a `type 0' transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe1.08_{1.08}Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.Comment: 7 pages, 4 figur

    The quantum origins of skyrmions and half-skyrmions in Cu2OSeO3

    Full text link
    The Skyrme-particle, the skyrmionskyrmion, was introduced over half a century ago and used to construct field theories for dense nuclear matter. But with skyrmions being mathematical objects - special types of topological solitons - they can emerge in much broader contexts. Recently skyrmions were observed in helimagnets, forming nanoscale spin-textures that hold promise as information carriers. Extending over length-scales much larger than the inter-atomic spacing, these skyrmions behave as large, classical objects, yet deep inside they are of quantum origin. Penetrating into their microscopic roots requires a multi-scale approach, spanning the full quantum to classical domain. By exploiting a natural separation of exchange energy scales, we achieve this for the first time in the skyrmionic Mott insulator Cu2_2OSeO3_3. Atomistic ab initio calculations reveal that its magnetic building blocks are strongly fluctuating Cu4_4 tetrahedra. These spawn a continuum theory with a skyrmionic texture that agrees well with reported experiments. It also brings to light a decay of skyrmions into half-skyrmions in a specific temperature and magnetic field range. The theoretical multiscale approach explains the strong renormalization of the local moments and predicts further fingerprints of the quantum origin of magnetic skyrmions that can be observed in Cu2_2OSeO3_3, like weakly dispersive high-energy excitations associated with the Cu4_4 tetrahedra, a weak antiferromagnetic modulation of the primary ferrimagnetic order, and a fractionalized skyrmion phase.Comment: 5 pages, 3 figure

    Pressure-induced phase transitions and high-pressure tetragonal phase of Fe1.08Te

    Full text link
    We report the effects of hydrostatic pressure on the temperature-induced phase transitions in Fe1.08Te in the pressure range 0-3 GPa using synchrotron powder x-ray diffraction (XRD). The results reveal a plethora of phase transitions. At ambient pressure, Fe1.08Te undergoes simultaneous first-order structural symmetry-breaking and magnetic phase transitions, namely from the paramagnetic tetragonal (P4/nmm) to the antiferromagnetic monoclinic (P2_1/m) phase. We show that, at a pressure of 1.33 GPa, the low temperature structure adopts an orthorhombic symmetry. More importantly, for pressures of 2.29 GPa and higher, a symmetry-conserving tetragonal-tetragonal phase transition has been identified from a change in the c/a ratio of the lattice parameters. The succession of different pressure and temperature-induced structural and magnetic phases indicates the presence of strong magneto-elastic coupling effects in this material.Comment: 11 page

    Forward-Backward Asymmetries in Hadronically Produced Lepton Pairs

    Get PDF
    It has now become possible to observe appreciable numbers of hadronically produced lepton pairs in mass ranges where the contributions of the photon and Z0Z^0 are comparable. Consequently, in the reaction ppˉ→ℓ−ℓ++
p \bar p \to \ell^- \ell^+ + \ldots, substantial forward-backward asymmetries can be seen. These asymmetries provide a test of the electroweak theory in a new regime of energies, and can serve as diagnostics for any new neutral vector bosons coupling both to quarks and to charged lepton pairs.Comment: 11 pages, latex, 4 uuencoded figures sent separately, Fig. 2 revise

    Polarization dependence of x-ray absorption spectra in Na_xCoO_2

    Full text link
    In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions between 3d orbitals. We obtain the ground state for two electronic occupations in the cluster that correspond nominally to all O in the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalency and cubic crystal field effects, that result in low spin Co 3d configurations. Our results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure

    High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12

    Full text link
    The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12 and NaFe4Sb12 is studied by point-contact Andreev reflection using superconducting Nb and Pb tips. From these measurements an intrinsic transport spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is inferred which establishes these materials as a new class of highly spin polarized ferromagnets. The results are in accord with band structure calculations within the local spin density approximation (LSDA) that predict nearly 100% spin polarization in the density of states. We discuss the impact of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi

    Superconductivity induced by ruthenium substitution in an iron arsenide: investigation of SrFe2-xRuxAs2 (0 <= x <= 2)

    Full text link
    The magnetism in SrFe2As2 can be suppressed by electron doping through a small substitution of Fe by Co or Ni, giving way to superconductivity. We demonstrate that a massive substitution of Fe by isovalent ruthenium similarly suppresses the magnetic ordering in SrFe2-xRuxAs2 and leads to bulk superconductivity for 0.6 <= x <= 0.8. Magnetization, electrical resistivity, and specific heat data show Tc up to approx 20K. Detailed structural investigations reveal a strong decrease of the lattice parameter ratio c/a with increasing x. DFT band structure calculations are in line with the observation that the magnetic order in SrFe2-xRuxAs2 is only destabilized for large x.Comment: 6 pages, 5 figures, extended and revised versio

    Specific heat of Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2 single crystals: unconventional s±_\pm multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings

    Full text link
    We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2. This compound exhibits bulk superconductivity with a transition temperature Tc≈34T_c \approx 34\,K, which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ≈53\gamma \approx 53 mJ/mol K2^{2}. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s±_\pm pairing symmetry and gap magnitudes Δi\Delta_i of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of TcT_c. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-TcT_c iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.Comment: 8 Figures, Submitted to PR
    • 

    corecore