15 research outputs found

    Crystal structure of the dynamin tetramer

    Get PDF
    The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction

    Crystal structure of nucleotide-free dynamin

    Get PDF
    Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function

    Effects of Long-Term Ageing on Speaker Verification

    No full text
    Abstract. The changes that occur in the human voice due to ageing have been well documented. The impact of these changes on speaker verification is less clear. In this work, we examine the effect of long-term vocal ageing on a speaker verification system. On a cohort of 13 adult speakers, using a conventional GMM-UBM system, we carry out longitudinal testing of each speaker across a time span of 30-40 years. We uncover a progressive degradation in verification score as the time span between the training and test material increases. The addition of temporal information to the features causes the rate of degradation to increase. No significant difference was found between MFCC and PLP features. Subsequent experiments show that the effect of short-term ageing (<5 years) is not significant compared with normal inter-session variability. Above this time span however, ageing has a detrimental effect on verification. Finally, we show that the age of the speaker at the time of training influences the rate at which the verification scores degrade. Our results suggest that the verification score drop-off accelerates for speakers over the age of 60. The results presented are the first of their kind to quantify the effect of long-term vocal ageing on speaker verification.

    Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy

    No full text
    Background:Cancerous cells usually exhibit increased aerobic glycolysis, compared with normal tissue (the Warburg effect), making this pathway an attractive therapeutic target. Methods:Cell viability, cell number, clonogenic assay, reactive oxygen (ROS), ATP, and apoptosis were assayed in MCF-7 tumour cells and corresponding primary human mammary epithelial cells (HMEC). Results:Combining the glycolysis inhibitors 2-deoxyglucose (2DG; 180 mM) or lonidamine (300 μM) with 10 J cm-2 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) increases MCF-7 cytotoxicity (by 3.5-fold to 70% death after 24 h, and by 10-fold in 9-day clonogenic assays). However, glycolysis inhibition only slightly increases HMEC PDT cytotoxicity (between two-fold and three-fold to a maximum of 9% death after 24 h). The potentiation of PDT cytotoxicity only occurred if the glycolysis inhibitors were added after ALA incubation, as they inhibited intracellular accumulation of photosensitiser if coincubated with ALA. Conclusion:As 2DG and lonidamine are already used as cancer chemotherapeutic agents, our results are directly translatable to combination therapies with existing topical PD
    corecore