25 research outputs found

    Proteoglycan-4 Regulates Fibroblast to Myofibroblast Transition and Expression of Fibrotic Genes in the Synovium

    Get PDF
    Background: Synovial tissue fibrosis is common in advanced OA with features including the presence of stress fiber-positive myofibroblasts and deposition of cross-linked collagen type-I. Proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and is a major component of synovial fluid. PRG4 is a ligand of the CD44 receptor. Our objective was to examine the role of PRG4-CD44 interaction in regulating synovial tissue fibrosis in vitro and in vivo. Methods: OA synoviocytes were treated with TGF-Ξ² Β± PRG4 for 24h and Ξ±-SMA content was determined using immunofluorescence. Rhodamine-labeled rhPRG4 was incubated with OA synoviocytes Β± anti-CD44 or isotype control antibodies and cellular uptake of rhPRG4 was determined following a 30-min incubation and Ξ±-SMA expression following a 24-h incubation. HEK-TGF-Ξ² cells were treated with TGF-Ξ² Β± rhPRG4 and Smad3 phosphorylation was determined using immunofluorescence and TGF-Ξ²/Smad pathway activation was determined colorimetrically. We probed for stress fibers and focal adhesions (FAs) in TGF-Ξ²-treated murine fibroblasts and fibroblast migration was quantified Β± rhPRG4. Synovial expression of fibrotic markers: Ξ±-SMA, collagen type-I, and PLOD2 in Prg4 gene-trap (Prg4GT) and recombined Prg4GTR animals were studied at 2 and 9 months of age. Synovial expression of Ξ±-SMA and PLOD2 was determined in 2-month-old Prg4GT/GT&Cd44βˆ’/βˆ’ and Prg4GTR/GTR&Cd44βˆ’/βˆ’ animals. Results: PRG4 reduced Ξ±-SMA content in OA synoviocytes (p \u3c 0.001). rhPRG4 was internalized by OA synoviocytes via CD44 and CD44 neutralization attenuated rhPRG4’s antifibrotic effect (p \u3c 0.05). rhPRG4 reduced pSmad3 signal in HEKTGF- Ξ² cells (p \u3c 0.001) and TGF-Ξ²/Smad pathway activation (p \u3c 0.001). rhPRG4 reduced the number of stress fiberpositive myofibroblasts, FAs mean size, and cell migration in TGF-Ξ²-treated NIH3T3 fibroblasts (p \u3c 0.05). rhPRG4 inhibited fibroblast migration in a macrophage and fibroblast co-culture model without altering active or total TGF-Ξ² levels. Synovial tissues of 9-month-old Prg4GT/GT animals had higher Ξ±-SMA, collagen type-I, and PLOD2 (p \u3c 0.001) content and Prg4 re-expression reduced these markers (p \u3c 0.01). Prg4 re-expression also reduced Ξ±-SMA and PLOD2 staining in CD44-deficient mice. Conclusion: PRG4 is an endogenous antifibrotic modulator in the joint and its effect on myofibroblast formation is partially mediated by CD44, but CD44 is not required to demonstrate an antifibrotic effect in vivo

    Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms

    Get PDF
    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments

    Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells

    Full text link
    In individuals with chronic myeloid leukemia (CML) treated by autologous hematopoietic stem cell (HSC) transplantation, malignant progenitors in the graft contribute to leukemic relapse, but the mechanisms of homing and engraftment of leukemic CML stem cells are unknown. Here we show that CD44 expression is increased on mouse stem-progenitor cells expressing BCR-ABL and that CD44 contributes functional E-selectin ligands. In a mouse retroviral transplantation model of CML, BCR-ABL1-transduced progenitors from CD44-mutant donors are defective in homing to recipient marrow, resulting in decreased engraftment and impaired induction of CML-like myeloproliferative disease. By contrast, CD44-deficient stem cells transduced with empty retrovirus engraft as efficiently as do wild-type HSCs. CD44 is dispensable for induction of acute B-lymphoblastic leukemia by BCR-ABL, indicating that CD44 is specifically required on leukemic cells that initiate CML. The requirement for donor CD44 is bypassed by direct intrafemoral injection of BCR-ABL1-transduced CD44-deficient stem cells or by coexpression of human CD44. Antibody to CD44 attenuates induction of CML-like leukemia in recipients. These results show that BCR-ABL-expressing leukemic stem cells depend to a greater extent on CD44 for homing and engraftment than do normal HSCs, and argue that CD44 blockade may be beneficial in autologous transplantation in CML

    cd44

    No full text

    Ovulation: new dimensions and new regulators of the inflammatory-like response

    No full text
    Ovulation is a complex process that is initiated by the lutenizing hormone surge and is controlled by the temporal and spatial expression of specific genes. This review focuses on recent endocrine, biochemical, and genetic information that has been derived largely from the identification of new genes that are expressed in the ovary, and from knowledge gained by the targeted deletion of genes that appear to impact the ovulation process. Two main areas are described in most detail. First, because mutant mouse models indicate that appropriate formation of the cumulus matrix is essential for successful ovulation, genes expressed in the cumulus cells and those that control cumulus expansion are discussed. Second, because mice null for the progesterone receptor fail to ovulate and are ideal models for dissecting the critical events downstream of progesterone receptor, genes expressed in mural granulosa cells that regulate the expression of novel proteases are described.JoAnne S. Richards, Darryl L. Russell, Scott Ochsner, and Β­Lawrence L. Espey
    corecore