14,250 research outputs found
Spin dynamics in InAs-nanowire quantum-dots coupled to a transmission line
We study theoretically electron spins in nanowire quantum dots placed inside
a transmission line resonator. Because of the spin-orbit interaction, the spins
couple to the electric component of the resonator electromagnetic field and
enable coherent manipulation, storage, and read-out of quantum information in
an all-electrical fashion. Coupling between distant quantum-dot spins, in one
and the same or different nanowires, can be efficiently performed via the
resonator mode either in real time or through virtual processes. For the latter
case we derive an effective spin-entangling interaction and suggest means to
turn it on and off. We consider both transverse and longitudinal types of
nanowire quantum-dots and compare their manipulation timescales against the
spin relaxation times. For this, we evaluate the rates for spin relaxation
induced by the nanowire vibrations (phonons) and show that, as a result of
phonon confinement in the nanowire, this rate is a strongly varying function of
the spin operation frequency and thus can be drastically reduced compared to
lateral quantum dots in GaAs. Our scheme is a step forward to the formation of
hybrid structures where qubits of different nature can be integrated in a
single device
Measuring Polynomial Invariants of Multi-Party Quantum States
We present networks for directly estimating the polynomial invariants of
multi-party quantum states under local transformations. The structure of these
networks is closely related to the structure of the invariants themselves and
this lends a physical interpretation to these otherwise abstract mathematical
quantities. Specifically, our networks estimate the invariants under local
unitary (LU) transformations and under stochastic local operations and
classical communication (SLOCC). Our networks can estimate the LU invariants
for multi-party states, where each party can have a Hilbert space of arbitrary
dimension and the SLOCC invariants for multi-qubit states. We analyze the
statistical efficiency of our networks compared to methods based on estimating
the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update
Impact of ultrafast electronic damage in single particle x-ray imaging experiments
In single particle coherent x-ray diffraction imaging experiments, performed
at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray
pulses to obtain single-shot diffraction patterns. The high intensity induces
electronic dynamics on the femtosecond time scale in the system, which can
reduce the contrast of the obtained diffraction patterns and adds an isotropic
background. We quantify the degradation of the diffraction pattern from
ultrafast electronic damage by performing simulations on a biological sample
exposed to x-ray pulses with different parameters. We find that the contrast is
substantially reduced and the background is considerably strong only if almost
all electrons are removed from their parent atoms. This happens at fluences of
at least one order of magnitude larger than provided at currently available
XFEL sources.Comment: 15 pages, 3 figures submitted to PR
Generating entanglement of photon-number states with coherent light via cross-Kerr nonlinearity
We propose a scheme for generating entangled states of light fields. This
scheme only requires the cross-Kerr nonlinear interaction between coherent
light-beams, followed by a homodyne detection. Therefore, this scheme is within
the reach of current technology. We study in detail the generation of the
entangled states between two modes, and that among three modes. In addition to
the Bell states between two modes and the W states among three modes, we find
plentiful new kinds of entangled states. Finally, the scheme can be extend to
generate the entangled states among more than three modes.Comment: 2 figure
Lindblad rate equations
In this paper we derive an extra class of non-Markovian master equations
where the system state is written as a sum of auxiliary matrixes whose
evolution involve Lindblad contributions with local coupling between all of
them, resembling the structure of a classical rate equation. The system
dynamics may develops strong non-local effects such as the dependence of the
stationary properties with the system initialization. These equations are
derived from alternative microscopic interactions, such as complex environments
described in a generalized Born-Markov approximation and tripartite
system-environment interactions, where extra unobserved degrees of freedom
mediates the entanglement between the system and a Markovian reservoir.
Conditions that guarantees the completely positive condition of the solution
map are found. Quantum stochastic processes that recover the system dynamics in
average are formulated. We exemplify our results by analyzing the dynamical
action of non-trivial structured dephasing and depolarizing reservoirs over a
single qubit.Comment: 12 pages, 2 figure
The Ecology of Pulse Events: Insights From an Extreme Climatic Event in a Polar Desert Ecosystem
Climate change is occurring globally, with wide ranging impacts on organisms and ecosystems alike. While most studies focus on increases in mean temperatures and changes in precipitation, there is growing evidence that an increase in extreme events may be particularly important to altering ecosystem structure and function. During extreme events organisms encounter environmental conditions well beyond the range normally experienced. Such conditions may cause rapid changes in community composition and ecosystem states. We present the impact of an extreme pulse event (a flood) on soil communities in an Antarctic polar desert. Taylor Valley, McMurdo Dry Valleys, is dominated by large expanses of dry, saline soils. During the austral summer, melting of glaciers, snow patches and subsurface ice supplies water to ephemeral streams and wetlands. We show how the activation of a nonâannual ephemeral stream, Wormherder Creek, and the associated wetland during an exceptional highâflow event alters soil properties and communities. The flow of water increased soil water availability and decreased salinity within the wetted zone compared with the surrounding dry soils. We propose that periodic leaching of salts from flooding reduces soil osmotic stress to levels that are more favorable for soil organisms, improving the habitat suitability, which has a strong positive effect on soil animal abundance and diversity. Moreover, we found that communities differentiated along a soil moisture gradient and that overland water flow created greater connectivity within the landscape, and is expected to promote soil faunal dispersal. Thus, floods can âprecondition\u27 soils to support belowground communities by creating conditions below or above key environmental thresholds. We conclude that pulse events can have significant longâterm impacts on soil habitat suitability, and knowledge of pulse events is essential for understanding the present distribution and functioning of communities in soil ecosystems
Quantum Decoherence of Two Qubits
It is commonly stated that decoherence in open quantum systems is due to
growing entanglement with an environment. In practice, however, surprisingly
often decoherence may equally well be described by random unitary dynamics
without invoking a quantum environment at all. For a single qubit, for
instance, pure decoherence (or phase damping) is always of random unitary type.
Here, we construct a simple example of true quantum decoherence of two qubits:
we present a feasible phase damping channel of which we show that it cannot be
understood in terms of random unitary dynamics. We give a very intuitive
geometrical measure for the positive distance of our channel to the convex set
of random unitary channels and find remarkable agreement with the so-called
Birkhoff defect based on the norm of complete boundedness.Comment: 5 pages, 4 figure
Effective thermodynamics of strongly coupled qubits
Interactions between a quantum system and its environment at low temperatures
can lead to violations of thermal laws for the system. The source of these
violations is the entanglement between system and environment, which prevents
the system from entering into a thermal state. On the other hand, for two-state
systems, we show that one can define an effective temperature, placing the
system into a `pseudo-thermal' state where effective thermal laws are upheld.
We then numerically explore these assertions for an n-state system inspired by
the spin-boson environment.Comment: 9 pages, 3 figure
- âŠ