51 research outputs found

    First measurement of R(Xτ/)R(X_{\tau/\ell}) as an inclusive test of the bcτνb \to c \tau \nu anomaly

    Full text link
    We measure the tau-to-light-lepton ratio of inclusive BB-meson branching fractions R(Xτ/)B(BXτν)/B(BXν)R(X_{\tau/\ell}) \equiv \mathcal{B}(B\to X \tau \nu)/\mathcal{B}(B \to X \ell \nu), where \ell indicates an electron or muon, and thereby test the universality of charged-current weak interactions. We select events that have one fully reconstructed BB meson and a charged lepton candidate from 189 fb1189~\mathrm{fb}^{-1} of electron-positron collision data collected with the Belle II detector. We find R(Xτ/)=0.228±0.016 (stat)±0.036 (syst)R(X_{\tau/\ell}) = 0.228 \pm 0.016~(\mathrm{stat}) \pm 0.036~(\mathrm{syst}), in agreement with standard-model expectations. This is the first direct measurement of R(Xτ/)R(X_{\tau/\ell})

    Tests of light-lepton universality in angular asymmetries of B0DνB^0 \to D^{*-} \ell \nu decays

    Full text link
    We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic \Bz-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral \B is fully reconstructed in \PUpsilonFourS{} \to\B\overline{B} decays in data corresponding to \lumion integrated luminosity from electron-positron collisions collected with the \belletwo detector. We find no significant deviation from the standard model expectations

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements

    Measurement of the branching fraction and CP\it CP asymmetry of B0π0π0B^{0} \rightarrow \pi^{0} \pi^{0} decays using 198×106198 \times 10^6 BBB\overline{B} pairs in Belle II data

    Full text link
    We report measurements of the branching fraction and CP\it CP asymmetry in B0π0π0B^{0} \to \pi^{0} \pi^{0} decays reconstructed at Belle II in an electron-positron collision sample containing 198×106198 \times 10^{6} BBB\overline{B} pairs. We measure a branching fraction \mathcal{B}(\Bpipi) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6} and a CP\it CP asymmetry \Acp(\Bpipi) = 0.14 \pm 0.46 \pm 0.07, where the first uncertainty is statistical and the second is systematic

    Angular analysis of B+ρ+ρ0B^+ \to \rho^+\rho^0 decays reconstructed in 2019, 2020, and 2021 Belle II data

    Full text link
    We report on a Belle II measurement of the branching fraction (B\mathcal{B}), longitudinal polarization fraction (fLf_L), and CP asymmetry (ACP\mathcal{A}_{CP}) of B+ρ+ρ0B^+\to \rho^+\rho^0 decays. We reconstruct B+ρ+(π+π0(γγ))ρ0(π+π)B^+\to \rho^+(\to \pi^+\pi^0(\to \gamma\gamma))\rho^0(\to \pi^+\pi^-) decays in a sample of SuperKEKB electron-positron collisions collected by the Belle II experiment in 2019, 2020, and 2021 at the Υ\Upsilon(4S) resonance and corresponding to 190 fb1^{-1} of integrated luminosity. We fit the distributions of the difference between expected and observed BB candidate energy, continuum-suppression discriminant, dipion masses, and decay angles of the selected samples, to determine a signal yield of 345±31345 \pm 31 events. The signal yields are corrected for efficiencies determined from simulation and control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\ 2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6},, f_L = 0.943 ^{+\ 0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst),and, and \mathcal{A}_{CP}=-0.069 \pm 0.068(\rm stat) \pm 0.060 (\rm syst).Theresultsagreewithpreviousmeasurements.Thisisthefirstmeasurementof. The results agree with previous measurements. This is the first measurement of \mathcal{A}_{CP}in in B^+\to \rho^+\rho^0$ decays reported by Belle II

    Reconstruction of BρνB \to \rho \ell \nu_\ell decays identified using hadronic decays of the recoil BB meson in 2019 -- 2021 Belle II data

    Full text link
    We present results on the semileptonic decays B0ρ+νB^0 \to \rho^- \ell^+ \nu_\ell and B+ρ0+νB^+ \to \rho^0 \ell^+ \nu_\ell in a sample corresponding to 189.9/fb of Belle II data at the SuperKEKB ee+e^- e^+ collider. Signal decays are identified using full reconstruction of the recoil BB meson in hadronic final states. We determine the total branching fractions via fits to the distributions of the square of the "missing" mass in the event and the dipion mass in the signal candidate and find B(B0ρ+ν)=(4.12±0.64(stat)±1.16(syst))×104{\mathcal{B}(B^0\to\rho^-\ell^+ \nu_\ell) = (4.12 \pm 0.64(\mathrm{stat}) \pm 1.16(\mathrm{syst})) \times 10^{-4}} and B(B+ρ0+ν)=(1.77±0.23(stat)±0.36(syst))×104{\mathcal{B}({B^+\to\rho^0\ell^+\nu_\ell}) = (1.77 \pm 0.23 (\mathrm{stat}) \pm 0.36 (\mathrm{syst})) \times 10^{-4}} where the dominant systematic uncertainty comes from modeling the nonresonant B(ππ)+νB\to (\pi\pi)\ell^+\nu_\ell contribution

    Determination of Vub|V_{ub}| from untagged B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays using 2019-2021 Belle II data

    Full text link
    We present an analysis of the charmless semileptonic decay B0π+νB^0\to\pi^- \ell^+ \nu_{\ell}, where =e,μ\ell = e, \mu, from 198.0 million pairs of BBˉB\bar{B} mesons recorded by the Belle II detector at the SuperKEKB electron-positron collider. The decay is reconstructed without identifying the partner BB meson. The partial branching fractions are measured independently for B0πe+νeB^0\to\pi^- e^+ \nu_{e} and B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} as functions of q2q^{2} (momentum transfer squared), using 3896 B0πe+νeB^0\to\pi^- e^+ \nu_{e} and 5466 B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} decays. The total branching fraction is found to be (1.426±0.056±0.125)×104(1.426 \pm 0.056 \pm 0.125) \times 10^{-4} for B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays, where the uncertainties are statistical and systematic, respectively. By fitting the measured partial branching fractions as functions of q2q^{2}, together with constraints on the nonperturbative hadronic contribution from lattice QCD calculations, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element VubV_{ub}, (3.55±0.12±0.13±0.17)×103(3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}, is extracted. Here, the first uncertainty is statistical, the second is systematic and the third is theoretical

    Measurement of the branching fractions and CPCP asymmetries of B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0 decays in 2019-2021 Belle II data

    Full text link
    We determine the branching fractions B{\mathcal{B}} and CPCP asymmetries ACP{\mathcal{A}_{{\it CP}}} of the decays B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0. The results are based on a data set containing 198 million bottom-antibottom meson pairs corresponding to an integrated luminosity of 190  fb1190\;\text{fb}^{-1} recorded by the Belle II detector in energy-asymmetric electron-positron collisions at the Υ(4S)\Upsilon (4S) resonance. We measure B(B+π+π0)=(6.12±0.53±0.53)×106{\mathcal{B}(B^+ \rightarrow \pi^+ \pi^0) = (6.12 \pm 0.53 \pm 0.53)\times 10^{-6}}, B(B+K+π0)=(14.30±0.69±0.79)×106{\mathcal{B}(B^+ \rightarrow K^+ \pi^0) = (14.30 \pm 0.69 \pm 0.79)\times 10^{-6}}, ACP(B+π+π0)=0.085±0.085±0.019{\mathcal{A}_{{\it CP}}(B^+ \rightarrow \pi^+ \pi^0) = -0.085 \pm 0.085 \pm 0.019}, and ACP(B+K+π0)=0.014±0.047±0.010{\mathcal{A}_{{\it CP}}(B^+ \rightarrow K^+ \pi^0) = 0.014 \pm 0.047 \pm 0.010}, where the first uncertainties are statistical and the second are systematic. These results improve a previous Belle II measurement and agree with the world averages

    Search for a τ+τ\tau^+\tau^- resonance in e+eμ+μτ+τe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} \tau^+\tau^- events with the Belle II experiment

    Full text link
    We report the first search for a non-standard-model resonance decaying into τ\tau pairs in e+eμ+μτ+τe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} \tau^+\tau^- events in the 3.6-10 GeV/c2c^{2} mass range. We use a 62.8 fb1^{-1} sample of e+ee^+e^- collisions collected at a center-of-mass energy of 10.58 GeV by the Belle II experiment at the SuperKEKB collider. The analysis probes three different models predicting a spin-1 particle coupling only to the heavier lepton families, a Higgs-like spin-0 particle that couples preferentially to charged leptons (leptophilic scalar), and an axion-like particle, respectively. We observe no evidence for a signal and set exclusion limits at 90% confidence level on the product of cross section and branching fraction into τ\tau pairs, ranging from 0.7 fb to 24 fb, and on the couplings of these processes. We obtain world-leading constraints on the couplings for the leptophilic scalar model for masses above 6.5 GeV/c2c^2 and for the axion-like particle model over the entire mass range
    corecore