9 research outputs found

    Maintenance of genome stability by Fanconi anemia proteins

    Get PDF

    Inhaled nitric oxide suppresses neuroinflammation in experimental ischemic stroke.

    No full text
    Ischemic stroke is a major global health issue and characterized by acute vascular dysfunction and subsequent neuroinflammation. However, the relationship between these processes remains elusive. In the current study, we investigated whether alleviating vascular dysfunction by restoring vascular nitric oxide (NO) reduces post-stroke inflammation. Mice were subjected to experimental stroke and received inhaled NO (iNO; 50 ppm) after reperfusion. iNO normalized vascular cyclic guanosine monophosphate (cGMP) levels, reduced the elevated expression of intercellular adhesion molecule-1 (ICAM-1), and returned leukocyte adhesion to baseline levels. Reduction of vascular pathology significantly reduced the inflammatory cytokines interleukin-1β (Il-1β), interleukin-6 (Il-6), and tumor necrosis factor-α (TNF-α), within the brain parenchyma. These findings suggest that vascular dysfunction is responsible for leukocyte adhesion and that these processes drive parenchymal inflammation. Reversing vascular dysfunction may therefore emerge as a novel approach to diminish neuroinflammation after ischemic stroke and possibly other ischemic disorders

    Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles

    No full text
    RATIONALE: Stroke is the third most common cause of death in industrialized countries. The main therapeutic target is the ischemic penumbra, potentially salvageable brain tissue that dies within the first few hours after blood flow cessation. Hence, strategies to keep the penumbra alive until reperfusion occurs are needed. OBJECTIVE:: To study the effect of inhaled nitric oxide on cerebral vessels and cerebral perfusion under physiological conditions and in different models of cerebral ischemia. METHODS AND RESULTS:: This experimental study demonstrates that inhaled nitric oxide (applied in 30% oxygen/70% air mixture) leads to the formation of nitric oxide carriers in blood that distribute throughout the body. This was ascertained by in vivo microscopy in adult mice. Although under normal conditions inhaled nitric oxide does not affect cerebral blood flow, after experimental cerebral ischemia induced by transient middle cerebral artery occlusion it selectively dilates arterioles in the ischemic penumbra, thereby increasing collateral blood flow and significantly reducing ischemic brain damage. This translates into significantly improved neurological outcome. These findings were validated in independent laboratories using two different mouse models of cerebral ischemia and in a clinically relevant large animal model of stroke. CONCLUSIONS:: Inhaled nitric oxide thus may provide a completely novel strategy to improve penumbral blood flow and neuronal survival in stroke or other ischemic conditions
    corecore