88 research outputs found

    Integral representations for correlation functions of the XXZ chain at finite temperature

    Full text link
    We derive a novel multiple integral representation for a generating function of the \s^z-\s^z correlation functions of the spin-\2 XXZ chain at finite temperature and finite, longitudinal magnetic field. Our work combines algebraic Bethe ansatz techniques for the calculation of matrix elements with the quantum transfer matrix approach to thermodynamics.Comment: 33 pages, 2 figures, v2: 2 typos corrected, 1 figure adde

    Connectivity transition in the frustrated S=1 chain revisited

    Full text link
    The phase transition in the antiferromagnetic isotropic Heisenberg S=1 chain with frustrating next-nearest neighbor coupling alpha is reconsidered. We identify the order parameter of the large-alpha phase as describing two intertwined strings, each possessing a usual string order. The transition has a topological nature determined by the change in the string connectivity. Numerical evidence from the DMRG results is supported by the effective theory based on soliton states.Comment: 4 pages, 2 figures, Revtex 4, submitted to PR

    Novel assay to measure the plasmid mobilizing potential of mixed microbial communities

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We compare the transfer frequency of a mobilizable plasmid to that of a mobilizing and conjugal plasmid measured for a model strain and for the assayed community. With Pseudomonas putida carrying the gfp-tagged mobilizable IncQ plasmid RSF1010 as donor strain, we conducted solid surface mating experiments with either a P. putida strain carrying the mobilizing IncP-1α plasmid RP4 or a model bacterial community that was extracted from the inner walls of a domestic shower conduit. Additionally, we estimated the permissiveness of the same community for RP4 using P. putida as donor strain. The permissiveness of the model community for RP4 [at 1.16 × 10(-4) transconjugants per recipient (T/R)] was similar to that previously measured for soil microbial communities. RSF1010 was mobilized by the model community at a frequency of 1.16 × 10(-5) T/R, only one order of magnitude lower than its permissiveness to RP4. This mobilization frequency is unexpectedly high considering that (i) mobilization requires the presence of mobilizing conjugal plasmids within the permissive fraction of the recipients; (ii) in pure culture experiments with P. putida retromobilization of RSF1010 through RP4 only took place in approximately half of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial communities. This method has the potential to provide such insights; in addition it allows for the direct isolation of in situ mobilizing plasmids together with their endogenous hosts.We thank L. Riber and S. J. Sørensen for access to the tagged RSF1010 plasmid, L. K. Jensen for technical assistance in the laboratory and S. M. Milani for assistance in FACS sorting. This work was funded by the Villum Kann Rasmussen Foundation Center of Excellence CREAM (Center for Environmental and Agricultural Microbiology)

    Some New Exact Ground States for Generalize Hubbard Models

    Full text link
    A set of new exact ground states of the generalized Hubbard models in arbitrary dimensions with explicitly given parameter regions is presented. This is based on a simple method for constructing exact ground states for homogeneous quantum systems.Comment: 9 pages, Late

    Long-term manure exposure increases soil bacterial community potential for plasmid uptake.

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent and was dominated by β- and γ-Proteobacteria

    Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordConjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.This work was funded by the Villum Kann Rasmussen Foundation Center of Excellence CREAM (Center for Environmental and Agricultural Microbiology)

    Elementary excitations in the gapped phase of a frustrated S=1/2 spin ladder: from spinons to the Haldane triplet

    Full text link
    We use the variational matrix-product ansatz to study elementary excitations in the S=1/2 ladder with additional diagonal coupling, equivalent to a single S=1/2 chain with alternating exchange and next-nearest neighbor interaction. In absence of alternation the elementary excitation consists of two free S=1/2 particles ("spinons") which are solitons in the dimer order. When the nearest-neighbor exchange alternates, the "spinons" are confined into one S=1 excitation being a soliton in the generalized string order. Variational results are found to be in a qualitative agreement with the exact diagonalization data for 24 spins. We argue that such an approach gives a reasonably good description in a wide range of the model parameters.Comment: RevTeX, 13 pages, 11 embedded figures, uses psfig and multico

    Electronic Ladders with SO(5) Symmetry: Phase Diagrams and Correlations at half-filling

    Get PDF
    We construct a family of electronic ladder models with SO(5) symmetry which have exact ground states in the form of finitely correlated wave functions. Extensions for these models preserving this symmetry are studied using these states in a variational approach. Within this approach, the zero temperature phase diagram of these electronic ladders at half filling is obtained, reproducing the known results in the weak coupling (band insulator) and strong coupling regime, first studied by Scalapino, Zhang and Hanke. Finally, the compact form of the variational wave functions allows to compute various correlation functions for these systems.Comment: RevTeX+epsf macros, 23 pp. including figure

    Variational and DMRG studies of the Frustrated Antiferromagnetic Heisenberg S=1 Quantum Spin Chain

    Full text link
    We study a frustrated antiferromagnetic isotropic Heisenberg S=1S=1 chain using a variational ansatz and the DMRG. At αD=0.284(1)\alpha_D=0.284(1), there is a disorder point of the second kind, marking the onset of incommensurate correlations in the chain. At αL=0.3725(25)\alpha_L=0.3725(25) there is a Lifshitz point, at which the excitation spectrum develops a doubly degenerate structure. These points are the quantum remnants of the transition from antiferromagnetic to spiral order in the classical frustrated chain. At αT=0.7444(6)\alpha_T=0.7444(6) there is a first order phase transition from an AKLT phase to a next-nearest neighbor generalization of the AKLT model. At the transition, the string order parameter shows a discontinuous jump of 0.085 to 0; the correlation length and the gap are both finite at the transition. The problem of edge states in open frustrated chains is discussed at length.Comment: 37 pages, 14 figures, submitted to Phys.Rev.

    High-field magnetization study of the S = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n with a field-induced gap

    Full text link
    We present a high-field magnetization study of the SS = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO3_3)2_2(H2_2O)2_2]n_n. For this material, as result of the Dzyaloshinskii-Moriya interaction and a staggered gg tensor, the ground state is characterized by an anisotropic field-induced spin excitation gap and a staggered magnetization. Our data reveal the qualitatively different behavior in the directions of maximum and zero spin excitation gap. The data are analyzed via exact diagonalization of a linear spin chain with up to 20 sites and on basis of the Bethe ansatz equations, respectively. For both directions we find very good agreement between experimental data and theoretical calculations. We extract the magnetic coupling strength J/kBJ/k_B along the chain direction to 36.3(5) K and determine the field dependence of the staggered magnetization component msm_s.Comment: 5 pages, 2 figures (minor changes to manuscript and figures
    corecore