141 research outputs found

    Cross-sectional study of the burden of vector-borne and soil-transmitted polyparasitism in rural communities of Coast Province, Kenya.

    Get PDF
    BACKGROUND: In coastal Kenya, infection of human populations by a variety of parasites often results in co-infection or poly-parasitism. These parasitic infections, separately and in conjunction, are a major cause of chronic clinical and sub-clinical human disease and exert a long-term toll on economic welfare of affected populations. Risk factors for these infections are often shared and overlap in space, resulting in interrelated patterns of transmission that need to be considered at different spatial scales. Integration of novel quantitative tools and qualitative approaches is needed to analyze transmission dynamics and design effective interventions. METHODOLOGY: Our study was focused on detecting spatial and demographic patterns of single- and co-infection in six villages in coastal Kenya. Individual and household level data were acquired using cross-sectional, socio-economic, and entomological surveys. Generalized additive models (GAMs and GAMMs) were applied to determine risk factors for infection and co-infections. Spatial analysis techniques were used to detect local clusters of single and multiple infections. PRINCIPAL FINDINGS: Of the 5,713 tested individuals, more than 50% were infected with at least one parasite and nearly 20% showed co-infections. Infections with Schistosoma haematobium (26.0%) and hookworm (21.4%) were most common, as was co-infection by both (6.3%). Single and co-infections shared similar environmental and socio-demographic risk factors. The prevalence of single and multiple infections was heterogeneous among and within communities. Clusters of single and co-infections were detected in each village, often spatially overlapped, and were associated with lower SES and household crowding. CONCLUSION: Parasitic infections and co-infections are widespread in coastal Kenya, and their distributions are heterogeneous across landscapes, but inter-related. We highlighted how shared risk factors are associated with high prevalence of single infections and can result in spatial clustering of co-infections. Spatial heterogeneity and synergistic risk factors for polyparasitism need to be considered when designing surveillance and intervention strategies

    Measuring fitness of Kenyan children with polyparasitic infections using the 20-meter shuttle run test as a morbidity metric.

    Get PDF
    BACKGROUND: To date, there has been no standardized approach to the assessment of aerobic fitness among children who harbor parasites. In quantifying the disability associated with individual or multiple chronic infections, accurate measures of physical fitness are important metrics. This is because exercise intolerance, as seen with anemia and many other chronic disorders, reflects the body's inability to maintain adequate oxygen supply (VO(2) max) to the motor tissues, which is frequently linked to reduced quality-of-life in terms of physical and job performance. The objective of our study was to examine the associations between polyparasitism, anemia, and reduced fitness in a high risk Kenyan population using novel implementation of the 20-meter shuttle run test (20mSRT), a well-standardized, low-technology physical fitness test. METHODOLOGY/PRINCIPAL FINDINGS: Four villages in coastal Kenya were surveyed during 2009-2010. Children 5-18 years were tested for infection with Schistosoma haematobium (Sh), malaria, filaria, and geohelminth infections by standard methods. After anthropometric and hemoglobin testing, fitness was assessed with the 20 mSRT. The 20 mSRT proved easy to perform, requiring only minimal staff training. Parasitology revealed high prevalence of single and multiple parasitic infections in all villages, with Sh being the most common (25-62%). Anemia prevalence was 45-58%. Using multiply-adjusted linear modeling that accounted for household clustering, decreased aerobic capacity was significantly associated with anemia, stunting, and wasting, with some gender differences. CONCLUSIONS/SIGNIFICANCE: The 20 mSRT, which has excellent correlation with VO(2), is a highly feasible fitness test for low-resource settings. Our results indicate impaired fitness is common in areas endemic for parasites, where, at least in part, low fitness scores are likely to result from anemia and stunting associated with chronic infection. The 20 mSRT should be used as a common metric to quantify physical fitness and compare sub-clinical disability across many different disorders and community settings

    Introduction of Aedes albopictus into a La Crosse virus--enzootic site in Illinois.

    Get PDF
    In late summer and fall 1997, Aedes albopictus mosquitoes were found in Peoria, Illinois, a long recognized focus of La Crosse virus transmission. Larvae were found in tires and other artificial containers, biting adults were recovered, and eggs were collected in oviposition traps within a 25-ha area. One chipmunk trapped < 0.25 km from the infested area tested positive for neutralizing antibodies against La Crosse virus

    Benefit of insecticide-treated nets, curtains and screening on vector borne diseases, excluding malaria: a systematic review and meta-analysis

    Get PDF
    Introduction Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis. Methods MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated. Results Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified. Conclusion There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses

    Triatoma dimidiata Infestation in Chagas Disease Endemic Regions of Guatemala: Comparison of Random and Targeted Cross-Sectional Surveys

    Get PDF
    Chagas disease is a vector-borne parasitic zoonosis endemic throughout South and Central America and Mexico. Guatemala is engaged in the Central America Initiative to interrupt Chagas disease transmission. A major strategy is the reduction of Triatoma dimidiata domiciliary infestations through indoor application of residual insecticides. Successful control of T. dimidiata will depend on accurate identification of areas at greatest risk for infestation. Initial efforts focused primarily on targeted surveys of presumed risk factors and suspected infestation to define intervention areas. This policy has not been evaluated and might not maximize the effectiveness of limited resources if high prevalence villages are missed or low prevalence villages are visited unnecessarily. We compare findings from the targeted surveys to concurrent random surveys in two primary foci of Chagas disease transmission in Guatemala to evaluate the performance of the targeted surveys. Our results indicate that random surveys performed better than targeted surveys and should be considered over targeted surveys when reliability of risk factors has not been evaluated, identify useful environmental factors to predict infestation, and indicate that infestation risk varies locally. These findings are useful for decision-makers at national Chagas Disease control programs in Central America, institutions supporting development efforts, and funding agencies
    corecore