9 research outputs found

    Loss of RhoB Expression Enhances the Myelodysplastic Phenotype of Mammalian Diaphanous-Related Formin mDia1 Knockout Mice

    Get PDF
    Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1−/−RhoB−/− mice are fertile and develop normally. Relative to age-matched Drf1−/−RhoB+/− mice, the age of myelodysplasia onset was earlier in Drf1−/−RhoB−/− animals—including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1−/−RhoB−/− mice relative to Drf1−/−RhoB+/− mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells

    Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently

    No full text
    Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology. 2003;51(1):71-81.In the indica rice (Oryza sativa L.) a cDNA was characterized that encoded OsAKT1 homologous to inward-rectifying potassium channels of the AKT/KAT subfamily. Transcript analysis located OsAKT1 predominantly in roots with low abundance in leaves. Cell-specificity of OsAKT expression was analyzed by in situ hybridizations. In roots, strongest signals were localized to the epidermis and the endodermis, whereas lower transcript levels were detected in cells of the vasculature and the cortex. In leaves, expression was detected in xylem parenchyma, phloem, and mesophyll cells. Transcriptional regulation and cell specificity of OsAKT1 during salt stress was compared in rice lines showing different salinity tolerance. In the salt-tolerant, sodium-excluding varieties Pokkali and BK, OsAKT1 transcripts disappeared from the exodermis in plants treated with 150 mM NaCl for 48 h but OsAKT1 transcription was not repressed in these cells in the salt-sensitive, sodium-accumulating variety IR29. Significantly, all lines were able to maintain potassium levels under sodium stress conditions, while sodium concentrations in the leaves of IR29 increased 5-10-fold relative to the sodium concentration in BK or Pokkali. The divergent, line-dependent and salt-dependent, regulation of this channel does not significantly affect potassium homeostasis under salinity stress. Rather, repression in Pokkali/BK and lack of repression in IR29 correlate with the overall tolerance character of these lines

    Detection of Farnesyltransferase Interface Hot Spots through Computational Alanine Scanning Mutagenesis

    No full text
    corecore