88 research outputs found

    Flavouring Group Evaluation 76 Revision 2 (FGE.76Rev2): Consideration of sulfur-containing heterocyclic compounds, evaluated by JECFA, structurally related to thiazoles, thiophenes, thiazoline and thienyl derivatives from chemical group 29 and miscellaneous substances from chemical group 30 evaluated by EFSA in FGE.21Rev5

    Get PDF
    The Panel on Food Additives and Flavourings (FAF) was requested to consider the JECFA evaluations of 28 flavouring substances in the Flavouring Group Evaluation 76 (FGE.76Rev2). Twenty-one of these substances have been considered in FGE.76Rev1. Seven substances could not be evaluated, because of concerns with respect to genotoxicity. New genotoxicity data have been provided for 4-methyl-5-vinylthiazole [FL-no: 15.018] and 4,5-dimethyl-2-isobutyl-3-thiazoline [FL-no: 15.032], which are representative substances of [FL-no: 15.005] and [FL-no: 15.029, 15.030, 15.130 and 15.131], respectively. The Panel concluded that the concern for genotoxicity is ruled out for [FL-no: 15.018 and 15.005]. The concerns for gene mutations and clastogenicity are ruled out for [FL-no: 15.032, 15.029, 15.030, 15.130 and 15.131]. In vitro, [FL-no: 15.032] induced micronuclei through an aneugenic mode of action. The available in vivo micronucleus study was not adequate to rule out the concern for potential aneugenicity in vivo. The Panel compared the lowest concentration resulting in aneugenicity in vitro with the use levels reported for [FL-no: 15.032]. Based on this comparison, the Panel concluded that the use of [FL-no: 15.032] at the maximum reported use levels does not raise a concern for aneugenicity. Based on structural similarity, for the remaining four substances [FL-no: 15.029, 15.030, 15.130 and 15.131], an aneugenic potential may also be anticipated. Individual genotoxicity data are needed to establish whether they have aneugenic potential. The Panel agrees with JECFA conclusions for 24 flavouring substances 'No safety concern at estimated levels of intake as flavouring substances' when based on the MSDI approach. For six substances, more reliable information on uses and use levels are needed to refine the mTAMDI estimates. For 15 substances, use levels are needed to calculate the mTAMDIs. For [FL-no: 15.109 and 15.113], information on the actual stereochemical composition is inadequate and the conclusion reached for the named substances cannot be applied to the materials of commerce

    Scientific Guidance on the data required for the risk assessment of flavourings to be used in or on foods

    Get PDF
    Following a request from the European Commission, EFSA developed a new scientific guidance to assist applicants in the preparation of applications for the authorisation of flavourings to be used in or on foods. This guidance applies to applications for a new authorisation as well as for a modification of an existing authorisation of a food flavouring, submitted under Regulation (EC) No 1331/2008. It defines the scientific data required for the evaluation of those food flavourings for which an evaluation and approval is required according to Article 9 of Regulation (EC) No 1334/2008. This applies to flavouring substances, flavouring preparations, thermal process flavourings, flavour precursors, other flavourings and source materials, as defined in Article 3 of Regulation (EC) No 1334/2008. Information to be provided in all applications relates to: (a) the characterisation of the food flavouring, including the description of its identity, manufacturing process, chemical composition, specifications, stability and reaction and fate in foods; (b) the proposed uses and use levels and the assessment of the dietary exposure and (c) the safety data, including information on the genotoxic potential of the food flavouring, toxicological data other than genotoxicity and information on the safety for the environment. For the toxicological studies, a tiered approach is applied, for which the testing requirements, key issues and triggers are described. Applicants should generate the data requested in each section to support the safety assessment of the food flavouring. Based on the submitted data, EFSA will assess the safety of the food flavouring and conclude whether or not it presents risks to human health and to the environment, if applicable, under the proposed conditions of use

    Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A

    Get PDF
    Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further support the reliability of the two-and three-generation studies demonstrating a lack of estrogen-dependent effects at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/ kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive results from some explorative studies have not been confirmed in subsequent studies with higher numbers of animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, including newborns and babies

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Sicherheitsfaktoren in der Risikobewertung von Chemikalien

    No full text

    Buchbesprechungen

    No full text
    corecore