14 research outputs found

    Functional analysis of the polymorphism - 211C>T in the regulatory region of the human ABCC3 gene

    No full text
    .The multidrug resistance protein 3 (MRP3/gene symbol: ABCC3) is an ATP-dependent efflux pump mediating the transport of endogenous glucuronides and conjugated drug metabolites across cell membranes. In humans the hepatic expression of ABCC3 mRNA seems to be influenced by the polymorphism C>T at the position − 211 in the promoter of the ABCC3 gene. The aim of this study was to investigate the possible mechanisms of how this SNP influences the MRP3 expression. Promoter luciferase reporter gene constructs representing 0.5, 1.1, 4.4, and 8.1 kb upstream of the translational start site were cloned with cytosine or thymine at position − 211 and transfected into HepG2, Caco-2, and LS174T cells. Reporter gene activity was dependent on the length of the promoter sequence but interestingly not on the nucleotide at position − 211. Cotransfection with FTF cDNA (Fetoprotein Transcription Factor) binding to elements near the − 211 polymorphism increased promoter activity in all constructs except the 0.5 kb fragment also independently of the − 211 SNP. Taken together, we did not find any influence of the − 211C>T ABCC3 promoter polymorphism on either the basal or the FTF induced reporter gene activity. Whether other tissue specific mechanisms reveal an impact of this SNP on the in vivo regulation of MRP3 remains to be determined.Ulrike Gradhand, Heike Tegude, Oliver Burk, Michel Eichelbaum, Martin F. Fromm and Jörg Köni

    Variability in human hepatic MRP4 expression: Influence of cholestasis and genotype

    No full text
    The multidrug resistance protein 4 (MRP4) is an efflux transporter involved in the transport of endogenous substrates and xenobiotics. We measured MRP4 mRNA and protein expression in human livers and found a 38- and 45-fold variability, respectively. We sequenced 2 kb of the 5'-flanking region, all exons and intron/exon boundaries of the MRP4 gene in 95 patients and identified 74 genetic variants including 10 non-synonymous variations, seven of them being located in highly conserved regions. None of the detected polymorphisms was significantly associated with changes in the MRP4 mRNA or protein expression. Immunofluorescence microscopy indicated that none of the non-synonymous variations affected the cellular localization of MRP4. However, in cholestatic patients the MRP4 mRNA and protein expression both were significantly upregulated compared to non-cholestatic livers (protein: 299+/-138 vs 100+/-60a.u., P<0.001). Taken together, human hepatic MRP4 expression is highly variable. Genetic variations were not sufficient to explain this variability. In contrast, cholestasis is one major determinant of human hepatic MRP4 expression.U. Gradhand, T. Lang, E. Schaeffeler, H. Glaeser, H. Tegude, K. Klein, P. Fritz, G. Jedlitschky, H.K. Kroemer, I. Bachmakov, B. Anwald, R. Kerb, U.M. Zanger, M. Eichelbaum, M. Schwab and M.F. From

    Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies?

    Get PDF
    Jonigk D, Werlein C, Acker T, et al. Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies? Virchows Archiv . 2022.The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential. © 2022. The Author(s)
    corecore