40 research outputs found

    Interactions between marine biota and ENSO: a conceptual model analysis

    Get PDF
    We develop a conceptual coupled atmosphereocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Nino-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these biophysical coupling mechanisms using continuation methods. It is demonstrated that bio- physical coupling may play a considerable role in modulating ENSO variability

    Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    Get PDF
    We consider the excitation dynamics of the two-photon \sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \sts transition, and has an influence on the derivation of its absolute frequency.Comment: 10 pages, 5 figure

    Two-photon excitation dynamics in bound two-body Coulomb systems including ac Stark shift and ionization

    Get PDF
    One of the dominant systematic effects that shift resonance lines in high-precision measurements of twophoton transitions is the dynamic (ac) Stark shift. For suitable laser frequencies, the ac Stark shift acquires an imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics governing the atomic two-photon excitation process must be well understood, and related considerations are the subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate an analytically solvable model scenario for the population dynamics in the density matrix formalism and describe in detail how to generalize the corresponding equations of motion for individual experimental use. We also calculate the dynamic Stark shift for two-photon S-S and S-D transitions in bound two-body Coulomb systems and the corresponding two-photon transition matrix elements. In particular, we investigate transitions for which the 1S ground state or alternatively the metastable 2S state acts as the lower-energy state, and for which states with n </= 20 represent the upper states. Relativistic and radiative corrections to the excitation dynamics, and the corresponding limitations to the accuracy of the measurements, are briefly discussed. Our considerations suggest the general feasibility of a detection mechanism, offering high quantum efficiency, based on two-step three-photon resonant ionization spectroscopy, for large classes of experimentally relevant two-photon transitions in two-body Coulomb systems.Peer reviewedPhysic

    Оценка финансовой устойчивости коммерческих банков Российской Федерации

    No full text
    Banking system occupies one of the top positions in the economy. In this paper we developed a model for assessing the financial stability of commercial banks. The result of this research can be used by auditors and bank clients
    corecore