92 research outputs found

    Finite Elements on Point Based Surfaces

    Get PDF

    Finite Elements on Point Based Surfaces

    Get PDF

    Finite Elements on Point Based Surfaces

    Get PDF

    Fairing of Point Based Surfaces

    Get PDF

    Finite Elements on Point Based Surfaces

    Get PDF

    Fairing of Point Based Surfaces

    Get PDF

    On a new conformal functional for simplicial surfaces

    Full text link
    We introduce a smooth quadratic conformal functional and its weighted version W2=eβ2(e)W2,w=e(ni+nj)β2(e),W_2=\sum_e \beta^2(e)\quad W_{2,w}=\sum_e (n_i+n_j)\beta^2(e), where β(e)\beta(e) is the extrinsic intersection angle of the circumcircles of the triangles of the mesh sharing the edge e=(ij)e=(ij) and nin_i is the valence of vertex ii. Besides minimizing the squared local conformal discrete Willmore energy WW this functional also minimizes local differences of the angles β\beta. We investigate the minimizers of this functionals for simplicial spheres and simplicial surfaces of nontrivial topology. Several remarkable facts are observed. In particular for most of randomly generated simplicial polyhedra the minimizers of W2W_2 and W2,wW_{2,w} are inscribed polyhedra. We demonstrate also some applications in geometry processing, for example, a conformal deformation of surfaces to the round sphere. A partial theoretical explanation through quadratic optimization theory of some observed phenomena is presented.Comment: 14 pages, 8 figures, to appear in the proceedings of "Curves and Surfaces, 8th International Conference", June 201

    Multilevel Solvers for Unstructured Surface Meshes

    Full text link

    On a linear programming approach to the discrete Willmore boundary value problem and generalizations

    Full text link
    We consider the problem of finding (possibly non connected) discrete surfaces spanning a finite set of discrete boundary curves in the three-dimensional space and minimizing (globally) a discrete energy involving mean curvature. Although we consider a fairly general class of energies, our main focus is on the Willmore energy, i.e. the total squared mean curvature Our purpose is to address the delicate task of approximating global minimizers of the energy under boundary constraints. The main contribution of this work is to translate the nonlinear boundary value problem into an integer linear program, using a natural formulation involving pairs of elementary triangles chosen in a pre-specified dictionary and allowing self-intersection. Our work focuses essentially on the connection between the integer linear program and its relaxation. We prove that: - One cannot guarantee the total unimodularity of the constraint matrix, which is a sufficient condition for the global solution of the relaxed linear program to be always integral, and therefore to be a solution of the integer program as well; - Furthermore, there are actually experimental evidences that, in some cases, solving the relaxed problem yields a fractional solution. Due to the very specific structure of the constraint matrix here, we strongly believe that it should be possible in the future to design ad-hoc integer solvers that yield high-definition approximations to solutions of several boundary value problems involving mean curvature, in particular the Willmore boundary value problem

    Non-Iterative, Feature-Preserving Mesh Smoothing

    Get PDF
    With the increasing use of geometry scanners to create 3D models, there is a rising need for fast and robust mesh smoothing to remove inevitable noise in the measurements. While most previous work has favored diffusion-based iterative techniques for feature-preserving smoothing, we propose a radically different approach, based on robust statistics and local first-order predictors of the surface. The robustness of our local estimates allows us to derive a non-iterative feature-preserving filtering technique applicable to arbitrary "triangle soups". We demonstrate its simplicity of implementation and its efficiency, which make it an excellent solution for smoothing large, noisy, and non-manifold meshes.Singapore-MIT Alliance (SMA
    corecore