817 research outputs found

    Meron-Cluster Solution of Fermion and Other Sign Problems

    Get PDF
    Numerical simulations of numerous quantum systems suffer from the notorious sign problem. Important examples include QCD and other field theories at non-zero chemical potential, at non-zero vacuum angle, or with an odd number of flavors, as well as the Hubbard model for high-temperature superconductivity and quantum antiferromagnets in an external magnetic field. In all these cases standard simulation algorithms require an exponentially large statistics in large space-time volumes and are thus impossible to use in practice. Meron-cluster algorithms realize a general strategy to solve severe sign problems but must be constructed for each individual case. They lead to a complete solution of the sign problem in several of the above cases.Comment: 15 pages,LATTICE9

    From Spin Ladders to the 2-d O(3) Model at Non-Zero Density

    Get PDF
    The numerical simulation of various field theories at non-zero chemical potential suffers from severe complex action problems. In particular, QCD at non-zero quark density can presently not be simulated for that reason. A similar complex action problem arises in the 2-d O(3) model -- a toy model for QCD. Here we construct the 2-d O(3) model at non-zero density via dimensional reduction of an antiferromagnetic quantum spin ladder in a magnetic field. The complex action problem of the 2-d O(3) model manifests itself as a sign problem of the ladder system. This sign problem is solved completely with a meron-cluster algorithm.Comment: Based on a talk by U.-J. Wiese, 6 pages, 12 figures, to be published in computer physics communication

    A many-fermion generalization of the Caldeira-Leggett model

    Full text link
    We analyze a model system of fermions in a harmonic oscillator potential under the influence of a dissipative environment: The fermions are subject to a fluctuating force deriving from a bath of harmonic oscillators. This represents an extension of the well-known Caldeira-Leggett model to the case of many fermions. Using the method of bosonization, we calculate one- and two-particle Green's functions of the fermions. We discuss the relaxation of a single extra particle added above the Fermi sea, considering also dephasing of a particle added in a coherent superposition of states. The consequences of the separation of center-of-mass and relative motion, the Pauli principle, and the bath-induced effective interaction are discussed. Finally, we extend our analysis to a more generic coupling between system and bath, that results in complete thermalization of the system.Comment: v3: fixed pdf problem; v2: added exact formula (Eq. 42) for Green's function and discussion of equilibrium density matrix (new Fig. 2); 10 figures, 21 pages, see quant-ph/0305098 for brief version of some of these result

    Correlation Lengths in Quantum Spin Ladders

    Full text link
    Analytic expressions for the correlation length temperature dependences are given for antiferromagnetic spin-1/2 Heisenberg ladders using a finite-size non-linear sigma-model approach. These calculations rely on identifying three successive crossover regimes as a function of temperature. In each of these regimes, precise and controlled approximations are formulated. The analytical results are found to be in excellent agreement with Monte Carlo simulations for the Heisenberg Hamiltonian.Comment: 5 pages LaTeX using RevTeX, 3 encapsulated postscript figure

    Dynamical simulation of current fluctuations in a dissipative two-state system

    Full text link
    Current fluctuations in a dissipative two-state system have been studied using a novel quantum dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is computed by deterministic integration over the real-time paths under the influence of colored noise. The nature of the transition from coherent to incoherent dynamics at low temperatures is re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter

    Broken time-reversal symmetry in strongly correlated ladder structures

    Get PDF
    We provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of a state in which long-range ordered orbital currents are arranged in a staggered pattern,coexisting with a charge density wave. The method used is the highly accurate density matrix renormalization group technique.This brings us closer to recent proposals that this order is realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.Comment: The version accepted in Phys. Rev. Lett. 5 pages, 6 eps figures, RevTex

    Critical exponents of the quantum phase transition in a planar antiferromagnet

    Full text link
    We have performed a large scale quantum Monte Carlo study of the quantum phase transition in a planar spin-1/2 Heisenberg antiferromagnet with CaV4O9 structure. We obtain a dynamical exponent z=1.018+/-0.02. The critical exponents beta, nu and eta agree within our errors with the classical 3D O(3) exponents, expected from a mapping to the nonlinear sigma model. This confirms the conjecture of Chubukov, Sachdev and Ye [Phys. Rev. B 49, 11919 (1994)] that the Berry phase terms in the planar Heisenberg antiferromagnet are dangerously irrelevant.Comment: 5 pages including 4 figures; revised version: some minor changes and added reference

    Pseudo-gap behavior in dynamical properties of high-Tc cuprates

    Full text link
    Dynamical properties of 2D antiferromagnets with hole doping are investigated to see the effects of short range local magnetic order on the temperature dependence of the dynamical magnetic susceptibility. We show the pseudo-gap like behavior of the temperature dependence of the NMR relaxation rate. We also discuss implications of the results in relations to the observed spin gap like behavior of low-doped copper oxide high-TcT_c superconductors.Comment: 3 pages, Revtex, with 2 eps figures, to appear in J.Phys.Soc.Jpn. Vol.67 No.

    Nontrivial behavior of the Fermi arc in the staggered-flux ordered phase

    Full text link
    The doping and temperature dependences of the Fermi arc in the staggered-flux, or the d-density wave, ordered phase of the t-J model are analyzed by the U(1) slave boson theory. Nontrivial behavior is revealed by the self-consistent calculation. At low doped and finite-temperature region, both the length of the Fermi arc and the width of the Fermi pocket are proportional to δ\delta and the area of the Fermi pocket is proportional to δ2\delta^2. This behavior is completely different from that at the zero temperature, where the area of the Fermi pocket becomes π2δ\pi^2 \delta. This behavior should be observed by detailed experiments of angle-resolved photoemission spectroscopy in the pseudogap phase of high-T_c cuprates if the pseudogap phase is the staggered-flux ordered phase.Comment: 4 pages, 4 figure
    • …
    corecore