5,531 research outputs found

    Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays

    Full text link
    Chiral properties of the two phases - collinear motif (below Morin transition temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray Bragg diffraction, using circular polarized incident x-rays tuned near the iron K-edge. Magneto-electric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time-odd. Orbital angular momentum accompanies the collinear motif, while it is conspicuously absent with the canted motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from independent experimental data, are shown to be completely trustworthy

    Dense Ionized and Neutral Gas Surrounding Sgr A*

    Get PDF
    We present high resolution H41a hydrogen recombination line observations of the 1.2' (3 pc) region surrounding Sgr A* at 92 GHz using the OVRO Millimeter Array with an angular resolution of 7" x 3" and velocity resolution of 13 km/s. New observations of H31a, H35a, H41a, and H44a lines were obtained using the NRAO 12-m telescope, and their relative line strengths are interpreted in terms of various emission mechanisms. These are the most extensive and most sensitive observations of recombination line to date. Observations of HCO+ (1 - 0) transition at 89 GHz are also obtained simultaneously with a 40% improved angular resolution and 4-15 times improved sensitivity over previous observations, and the distribution and kinematics of the dense molecular gas in the circumnuclear disk (CND) are mapped and compared with those of the ionized gas. The line brightness ratios of the hydrogen recombination lines are consistent with purely spontaneous emission from 7000 K gas with n_e = 20,000 cm−3^{-3} near LTE condition. A virial analysis suggests that the most prominent molecular gas clumps in the CND have mean densities of 10^7 cm^{-3}, sufficient to withstand the tidal shear in the Galactic Center region. Therefore, these clumps may survive over several dynamical times, and the CND may be a dynamically stable structure. We estimate a total gas mass of 3 x 10^5 solar mass for the CND. \Comment: 34 pages including 11 figures (4 jpgs), Latex, uses aastex. The full pdf format file including high resolution figures is available at http://www.astro.umass.edu/~myun/papers/SgrA.pdf . To appear in the 20 November 2004 (V616) issue of the Astrophysical Journa

    Decay of spin coherences in one-dimensional spin systems

    Get PDF
    Strategies to protect multi-qubit states against decoherence are difficult to formulate because of their complex many-body dynamics. A better knowledge of the decay dynamics would help in the construction of dynamical decoupling control schemes. Here we use solid-state nuclear magnetic resonance techniques to experimentally investigate decay of coherent multi-spin states in linear spin chains. Leveraging on the quasi-one-dimension geometry of fluorapatite crystal spin systems, we can gain a deeper insight on the multi-spin states created by the coherent evolution, and their subsequent decay, than it is possible in three-dimensional (3D) systems. We are then able to formulate an analytical model that captures the key features of the decay. We can thus compare the decoherence behavior for different initial states of the spin chain and link their decay rate to the state characteristics, in particular their coherence and long-range correlation among spins. Our experimental and theoretical study shows that the spin chains undergo a rich dynamics, with a slower decay rate than for the 3D case, and thus might be more amenable to decoupling techniques.National Science Foundation (U.S.) (Grant DMG-1005926)United States. Air Force Office of Scientific Research. Young Investigator Progra

    High Isolation Quad-Element SWB-MIMO Antenna with Dual Band-Notch for ISM and WLAN Band Wireless Applications

    Get PDF
    A quad-element super-wideband (2-20GHz) MIMO antenna including dual notched-band response at WiMAX (3.30-3.70GHz) and satellite-band (6.99-8.09GHz) is designed on RO3035 with total dimension of 118mm×86mm×1.67mm. Unique decoupling structure has been deployed to enhance the isolation (˃20dB) between two antenna elements. The fundamental properties of MIMO antennas like bandwidth ratio (10:1), isolation (>18dB), gain (4.14dB), Envelop Correlation-Coefficient (<0.0065), Total Active Reflection-Coefficient (< 0dB), Channel Capacity Loss (<0.25bps/Hz) and radiation patterns are also investigated in order to determine their practicality. Measurement and simulation results of the proposed SWB-MIMO antenna from 2 to 20GHz indicate that it will be the suitable candidate for wireless and biomedical applications

    High Isolation Quad-Element SWB-MIMO Antenna with Dual Band-Notch for ISM and WLAN Band Wireless Applications

    Get PDF
    A quad-element super-wideband (2-20GHz) MIMO antenna including dual notched-band response at WiMAX (3.30-3.70GHz) and satellite-band (6.99-8.09GHz) is designed on RO3035 with total dimension of 118mm×86mm×1.67mm. Unique decoupling structure has been deployed to enhance the isolation (˃20dB) between two antenna elements. The fundamental properties of MIMO antennas like bandwidth ratio (10:1), isolation (>18dB), gain (4.14dB), Envelop Correlation-Coefficient (<0.0065), Total Active Reflection-Coefficient (< 0dB), Channel Capacity Loss (<0.25bps/Hz) and radiation patterns are also investigated in order to determine their practicality. Measurement and simulation results of the proposed SWB-MIMO antenna from 2 to 20GHz indicate that it will be the suitable candidate for wireless and biomedical applications

    Spin kinetic theory - quantum kinetic theory in extended phase space

    Full text link
    The concept of phase space distribution functions and their evolution is used in the case of en enlarged phase space. In particular, we include the intrinsic spin of particles and present a quantum kinetic evolution equation for a scalar quasi-distribution function. In contrast to the proper Wigner transformation technique, for which we expect the corresponding quasi-distribution function to be a complex matrix, we introduce a spin projection operator for the density matrix in order to obtain the aforementioned scalar quasi-distribution function. There is a close correspondence between this projection operator and the Husimi (or Q) function used extensively in quantum optics. Such a function is based on a Gaussian smearing of a Wigner function, giving a positive definite distribution function. Thus, our approach gives a Wigner-Husimi quasi-distribution function in extended phase space, for which the reduced distribution function on the Bloch sphere is strictly positive. We also discuss the gauge issue and the fluid moment hierarchy based on such a quantum kinetic theory.Comment: 10 pages, to appear in Transport Theory and Statistical Physics, proceedings of Vlasovia III, 200

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    Full text link
    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfven waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations
    • …
    corecore