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Abstract. Strategies to protect multi-qubit states against decoherence are
difficult to formulate because of their complex many-body dynamics. A better
knowledge of the decay dynamics would help in the construction of dynamical
decoupling control schemes. Here we use solid-state nuclear magnetic resonance
techniques to experimentally investigate decay of coherent multi-spin states
in linear spin chains. Leveraging on the quasi-one-dimension geometry of
fluorapatite crystal spin systems, we can gain a deeper insight on the multi-
spin states created by the coherent evolution, and their subsequent decay, than
it is possible in three-dimensional (3D) systems. We are then able to formulate
an analytical model that captures the key features of the decay. We can thus
compare the decoherence behavior for different initial states of the spin chain
and link their decay rate to the state characteristics, in particular their coherence
and long-range correlation among spins. Our experimental and theoretical study
shows that the spin chains undergo a rich dynamics, with a slower decay rate than
for the 3D case, and thus might be more amenable to decoupling techniques.
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1. Introduction

Large quantum systems hold the promise to deliver improvements in computation and in
metrology, by exploiting entangled or squeezed states. Unfortunately these quantum systems are
usually very fragile and plagued by problems of decoherence [1]—as they undergo irreversible
decay [2] due to interaction with their environment. The decay of single qubits under the
effect of various types of environments have been extensively studied and control sequences
that could mitigate decoherence effects have been introduced (e.g. dynamical decoupling
techniques [3–6]). However, large scale quantum information processing systems will require
the preparation and control of multi-qubit states. These states are harder to control and to model
analytically because of their complex many-body dynamics. While some recent works have
looked at their decoherence and control schemes via dynamical decoupling [7], the decay was
usually assumed to be induced by an uncorrelated bath, acting independently on each qubit,
although this is often not the case in nature, especially for spatially close spins. In this paper, we
experimentally and theoretically study the decay of such multi-qubit states under the action of a
correlated spin bath. In particular, we are interested in investigating the decay rate dependence
on the correlations in a multi-qubit spin state. We leverage the low dimensionality of the system
studied—the linear coupling geometry provided by nuclear spins in apatite crystals [8, 9]—to
gain insight into both the many-body states created by the coherent Hamiltonian dynamics and
their ensuing decay. We present a simple analytical model that captures the essential features
of the multi-qubit decays and compares well with the experimental data. These results will be
helpful in paving the way for the future design of schemes to mitigate the decay.

Specifically, in a linear spin system—calcium fluorapatite (FAp) [10]—we consider multi-
spin states created by the double quantum (DQ) Hamiltonian HDQ, which has been widely
studied in quantum transport [11]. We analyze their decay under the natural dipolar Hamiltonian
Hdip. Similar decay dynamics were studied in more complex three-dimensional (3D) spin
systems [12–15] and extended to the study of localization phenomena [16, 17]. However, in
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contrast to 3D systems, the highly restricted coupling topology in our experiments leads to
analytically tractable solutions for the Hamiltonian evolution and the decay rates. It is thus
possible to have a much better characterization of the multi-spin states we can create than it was
possible in more complex 3D systems. As a result we can study how the decay rate changes
with the state characteristics, such as long-range correlations in extended spin clusters and their
degree of coherence. This is also important in light of recent work in creating low-dimensional
systems in ion-traps [18], or via Hamiltonian engineering [19] in crystals.

The paper is organized as follows. We describe the experimental system and methods and
present the experimental results in section 2. In section 3 we introduce an analytical model
(extended details can be found in the appendix) to interpret the experimental results. This leads
us to a better insight into the decay rate dependence on the state characteristics that we further
explore in section 4 by experimentally studying a diverse set of states.

2. Experimental methods and results

2.1. The spin system

The system of interest are 19F nuclear spins in a single crystal of FAp [Ca5(PO4)3F]. We use
nuclear magnetic resonance (NMR) techniques to study the spin dynamics at room temperature
in a 300 MHz Bruker Avance spectrometer (B0 = 7T) with a probe tuned to 282.4 MHz. In the
FAp crystal, six parallel chains lie along the crystal c-axis, with a short intra-nuclear spacing
within a single chain, r0 = 0.3442 nm, and a longer inter-chain separation of R = 0.9367 nm.
The spins interact via the secular dipole–dipole Hamiltonian

Hdip =

∑
i j

bi j [2σ i
z σ

j
z − (σ i

xσ
j

x + σ i
yσ

j
y )], (1)

where σ i
α are the usual Pauli matrices and the couplings are

bi j =
µ0

16π

γ 2h̄

r 3
i j

(1 − 3 cos2 ϑi j),

with µ0 the standard magnetic constant, γ the 19F gyromagnetic ratio, ri j the distance between
nucleus i and j and ϑi j the angle between Eri j and the z-axis. When the crystal is aligned with the
magnetic field, as in our experiments, the nearest-neighbor (NN) inter-chain dipolar coupling
is about 40 times weaker than the in-chain coupling. Thus, for short evolution times, couplings
across different chains can be neglected and the system can be considered as a collection of
one-dimensional (1D) spin chains [9, 20–23].

2.2. Experimental protocol

The experimental scheme is shown in figure 1. The system is first prepared in a suitable initial
state ρi starting from its equilibrium thermal state. Evolution under a propagator UMQ for a time
τ creates a complex, multiple-quantum coherence state [24]. The system is then let to evolve
freely for a time t , during which the coherences decay mainly under the effects of the dipolar
Hamiltonian. In order to observe this decay, we first refocus the remaining coherences with a
propagator U †

MQ before measuring the spin magnetization via the usual free-induction decay.
The equilibrium state is the Zeeman thermal state, ρth(0) ∝ exp(−ε6z) ≈ 1 − ε6z, where

6z =
∑

j σ j
z and ε = γ B0/kBT � 1 (with kB the Boltzmann constant and T the temperature).

New Journal of Physics 15 (2013) 093035 (http://www.njp.org/)

http://www.njp.org/


4

Initialize Correlate Acquire

UMQ Udip

RefocusDecay

UMQ

tτ τ

ϕ †

Figure 1. Experimental scheme. The system is first prepared in an initial state
of interest, for example the thermal equilibrium state or

∑
σx using a π/2-

pulse (red bar). Evolution via the DQ Hamiltonian HDQ (obtained by a multi-
pulse sequence, blue rectangles) creates spin correlations during the time τ .
A phase shift ϕ of the propagator encodes information about the multiple
quantum coherence intensities created. The state undergoes decay under the
dipolar interaction Hdip during the time t . The correlated state is refocused by
the inverse propagator U †

DQ before a π/2 pulse is used to detect the spin free-
induction decay.

We focus on the evolution and decay of the deviation from identity of this state, i.e. δρth ∼ 6z,
and of other initial states that can be created from δρth with appropriate manipulation (see
section 4). Indeed, the identity does not evolve and does not contribute to the signal.

Starting from the prepared initial state ρi, we create spin correlations by evolution under
the DQ Hamiltonian

HDQ =

∑
i j

bi j(σ
i
xσ

j
x − σ i

yσ
j

y ) (2)

which is known to generate quantum coherences among the spins [24]. The primitive pulse
cycle is given by, P2 =

δt
2 −

π

2 |x − δt ′
−

π

2 |x −
δt
2 , where δt ′

= 2δt + w, δt is the delay between
pulses and w is the width the π/2 pulse. We used the symmetrized eight-pulse variant of this
basic sequence [24, 25], P8 = P2 · P2 · P2 · P2 (where P2 is the time-reversed version of P2),
which simulates HDQ to second order in the Magnus expansion [26]. In the experiments, the
length of the π /2 pulse was w = 1.01 µs and the evolution time was incremented by varying
the inter-pulse delay from δt = 1 to 6.2 µs and the number of cydes was increased from 1 to
12 (varying both parameters enabled exploring a wide range of evolution times up to 1 ms).
A recycle delay of 5 s was used to re-equilibrate the system.

The density operator created by evolution under the DQ Hamiltonian can be decomposed
into its multiple quantum coherences (MQC) components, ρ(τ) = UMQ(τ )ρ(0)U †

MQ(τ ) =∑
m ρ(m), where a multiple quantum term of order m, ρ(m), acquires a phase mϕ under a

collective 6z rotation by an angle ϕ. The correlated spin states created under HDQ evolution
contain in general all even M coherence orders. However, since standard NMR techniques
measure only single-quantum coherences (SQC), in order to probe the higher spin coherences
it is necessary to indirectly encode their signatures into SQCs which can be measured
inductively [27]. This is achieved by labeling each coherence order with a different phase ϕ

by means of collective rotations Uϕ = exp(−iϕ6z/2) about the z-axis, effectively creating the
phase shifted DQ Hamiltonian, Hϕ

DQ = UϕHDQU †
ϕ . Finally, MQC are refocused back to single-

spin single-quantum terms and the free induction decay is measured. Each measurement is
repeated while incrementing ϕ from 0 to 2π in steps of δϕ = 2π/2K where K is the highest
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Figure 2. Normalized decay of quantum coherences created from the thermal
initial state by evolving for a time τ under the HDQ Hamiltonian. (ZQ blue open
circles, DQ red dots, total signal black stars). Data points are the normalized
signal intensities for evolution time τ = 48 µs (left) and τ = 589 µs (right). The
dashed lines are fitting using the function in equation (5). For comparison we
plot the free induction decay (green squares) that we fit with the function [28]
A[(1 − C)sinc(m2t) e−m1t2/2 + C], which corresponds to a second moment given
by M = m1 + m + 22/3.

order of MQC we wish to encode. If δρi is the initial density matrix, the final density matrix δρf

is given by

δρf(t, τ ) = U †
MQ(τ )Udip(t)U

ϕ

MQ(τ )δρiU
ϕ†
MQ(τ )U †

dip(t)UMQ(τ ), (3)

where UMQ(τ ) = exp(−iHDQτ).
Since often the observable δρo is proportional to the initial state (as it is the case for

the thermal equilibrium state and the total magnetization along the z-axis) we can write the
measured signal as a correlation S(t, τ ) = Tr{δρf(t, τ )δρo(τ )}, between the state prepared by
the DQ evolution, δρo(τ ) = UMQ(τ )δρoU †

MQ(τ ) and the same state after decay under the dipolar
evolution, δρf(t, τ ) = Udipδρi(τ )U †

dip. The signal intensities of various coherence orders are thus
given by the Fourier transform with respect to the phase ϕ:

I (m)(t, τ ) = Tr{δρ(m)
o (τ )δρ(m)(t, τ )} =

K∑
k=1

Sk(t, τ )e−ikmδϕ, (4)

where Sk(t, τ ) = Tr{δρk
f (t, τ )δρo} is the signal acquired in the kth measurement when setting

ϕ = πk/K .

2.3. Results and data analysis

We first studied the decay of MQC intensities created underHDQ starting from an initial thermal
state (δρth ∼ 6z). In a quasi-1D system such as FAp, it is known that the DQ Hamiltonian
excites mainly zero-quantum (ZQ) and DQ coherences [20, 29]. The decay of the total signal,
S(t, τ ) = Tr{ρf(t, τ )ρo}, and of each coherence intensity is shown in figure 2 as a function
of dipolar decay time (t) for two exemplary MQC excitation times, τ = 48 and 589 µs.
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The decoherence dynamics was studied by repeating the experimental scheme described above,
while varying the DQ evolution time (τ ) from 36 to 925 µs and the decay time (t) from 0 to
145 µs (which is on the order of free induction decay time).

We fitted the decay curves to Gaussian functions

G(t, τ ) = A(τ )([1 − C(τ )]e−M(τ )t2/2 + C(τ )), (5)

where A (amplitude), M (second moment) and C (asymptote) are used as fitting parameters that
vary with the DQ time τ . As shown by the decay curves in figure 2 and by the behavior of the
fitting parameters in figures 3 and 4, the system exhibits an interesting dynamics as a function of
the DQ-time evolution. This is in contrast to what was observed in 3D systems [12, 13], where
the decay simply becomes monotonically faster as the DQ-time τ is increased. The difference
can be traced to the fact that the constrained coupling topology in 1D systems allow for a slower
decay dominated by NN interactions, while in 3D systems the decay is more rapid and diffusion-
like. We can compare for example the decay of calcium fluoride (CaF2) [13] with FAp. While
the minimum distance between NNs is quite similar (rCaF2 = 0.27 nm versus rFAp = 0.34 nm) the
decay time is much faster for CaF2, both for short and especially for longer DQ-times, where it
can be almost an order of magnitude faster. In the following, we present a theoretical model of
the observed behavior in 1D systems.

3. Theoretical model and interpretation

To gain insight into the decay behavior, we model both the dipolar Hamiltonian and the DQ
Hamiltonian as 1D, NN interactions, neglecting the smaller contributions from long-range
couplings in the chain and between chains. This approximation is justified in the short time
limit that we explore experimentally [21].

3.1. Decay amplitude

The NN DQ Hamiltonian is known to be analytically solvable in 1D by means of a
Jordan–Wigner mapping [30] onto a system of free fermions. The density operator describing
the thermal initial state evolving under the DQ Hamiltonian can be expressed in terms of
canonical fermionic operators as [31, 32]

ρth(τ ) =

∑
p−q ∈ even

i−(p+q) f pq(2τ)(c†
pcq + c†

qcp − δp,q)

+ i
∑

p−q ∈ odd

i−(p+q) f pq(2τ)(c†
pc†

q − cqcp), (6)

where the first term describes ZQ coherences, ρ(0)(τ ), and the second term DQ coherences,
ρ(2)(τ ). Here we defined the fermionic operators cp = (

∏
k<p σ k

z )σ
p
− and

f pq(τ ) =
2

n + 1

∑
k

(−1)p sin(pκ) sin(qκ)e−2ibt cos κ, (7)

where N is the chain length and κ =
πk

N+1 .
We are interested in following the decay of these states under the dipolar Hamiltonian.

We thus consider the normalized signal as a function of decay time t :

S(t, τ ) = Tr{δρo(τ )Udip(t)δρ(τ)U †
dip(t)}/Tr{δρo(τ )δρ(τ)}. (8)
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Figure 3. Left: evolution of multiple quantum coherence intensities (AZQ blue,
ADQ red) starting from the thermal equilibrium initial state. The MQC intensities
are obtained from the amplitude parameter A(τ ) when fitting the decay curves
(error bars are also obtained from the fitting). The MQC intensities are then fitted
by functions (blue and red dashed lines) obtained from the analytical model of
the DQ Hamiltonian with NN couplings (equations (A.6) and (A.7)), yielding
a dipolar coupling 7.7 ×103 rad s−1. Right: asymptotes of the experimental
decay curves (CZQ blue, CDQ red, Ctotal black). The curves were fitted by
equation (9) with an additional linear term in τ , giving a dipolar coupling of
7.676 ×103 rad s−1.

We first note that the amplitude A(τ ) in equation (5) is given either by the total signal, AS(τ ) =

Tr{δρo(τ )δρ(τ)} or by the MQC intensities, AmQ(τ ) = Tr{δρ(m)
o (τ )δρ(m)(τ )}, at t = 0. This is

shown in figure 3(a), where we plot AZQ(τ ) and ADQ(τ ). Since the total signal decays during
the DQ evolution time τ (due to imperfection in the creation of the NN DQ Hamiltonian because
of pulse errors, higher-order corrections in the Magnus expansion as well as errors due to long-
range couplings [21]) we normalize these amplitudes by the total signal amplitude AS(τ ). Upon
this correction it is possible to fit the amplitudes to well-known analytical solutions for the zero-
(I (0)) and DQ (I (2)) intensities [29] (see also the appendix). From these fits, considering an
infinite chain, (figure 3) we find a NN dipolar constant b = 7.7 × 103 rad s−1. The value of the
dipolar constant b agrees very well with the one obtained from similar measurements done on a
different FAp crystal [9, 21] and also with the theoretical value b = 8.17 × 103 rad s−1 obtained
from the known structure of FAp.

3.2. Long-time asymptote

The only terms that contribute to the asymptote C are those that commute with the dipolar
Hamiltonian, i.e. C = Tr{ρc

i (τ )ρc
o(τ )}/Tr{ρ(τ)ρo(τ )}, such that [Hdip, ρ

c] = 0. In the NN
approximation, ρc contains only the population terms (i.e. p = q in equation (6)); hence we
obtain

C(τ ) =

(
1

N

∑
p

(−1)p f pp(2τ)

)2

=

(
1

N

∑
k

cos(4τ cos κ)

)2

. (9)
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Figure 4. Decay rates of the different MQ components as a function of DQ
evolution time τ for (left) the thermal and (right) end-polarized initial state.
Points are experimental results obtained from the fitting of individual decay
curves (such as in figure 2) for each DQ-time τ . Error bars are estimated from
fitting the decay curves with the function in equation (5)). The dashed lines are
µ M(b, τ ), where M(b, τ ) are the analytical curves in the appendix for N = 100
with b = 7.9 × 103 rad s−1. The total signal moment (black stars) was scaled by a
factor µ = 1.7, the ZQ moment (blue circles) by a factor 1.8 and the DQ moment
(red, dots) by 1.5.

As ρc only contains ZQ terms, we expect a zero asymptote for the DQ intensities. We use the
function C(τ ) with an additional linear term in τ to fit the experimentally obtained asymptotes.
This is shown in figure 3(b). The dipolar coupling (b) is used as a fitting parameter and the
value obtained from the fit, b = 7.676 × 103 rad s−1, agrees very well with the MQC fittings.
The linear increase of the asymptote with time is due to errors in the implementations of the
DQ evolution, as terms which are not ZQ and DQ coherences appear as an increased population
term when normalizing the signal.

3.3. Decay rate

To determine the decay rate, we analyze the evolution by a short time expan-
sion [33], ρi(t, τ ) ≈ ρi(τ ) − it[Hdip, ρi(τ )] −

t2

2 [Hdip, [Hdip, ρi(τ )]], with a corresponding sig-
nal, S(t, τ ) ∝ Tr{ρi(t, τ )ρo(τ )}. We note that the first order term does not give any contribution
to the signal [34], so we calculate the second moment

M =
Tr{[Hdip, [Hdip, ρi(τ )]]ρo(τ )}

Tr{ρi(τ )ρo(τ )}
=

Tr{[Hdip, ρi(τ )][ρo(τ ),Hdip]}

N2N
. (10)

We can further calculate the contributions to the second moment arising from the zero- and DQ
terms of the density operator

M (m)
=

Tr{[Hdip, ρ
(m)(τ )][ρ(m)(τ ),Hdip]}

Tr{ρ(m)(τ )ρ(−m)(τ )}
. (11)

These functions can be calculated analytically (see the appendix), thanks to the mapping to
fermionic operators. We used these functions to analyze the second moments in figure 4, fitting
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the experimental momentum Mexp to the analytical functions µM(b). From the fits we obtained
b = 7.9 × 103 rad s−1 and µ ≈ 1.7. This indicates that while the variations of M with the DQ
evolution time τ are well in agreement with the analytical model and the expected dipolar
coupling strength, the experimental second moment Mexp is larger than expected from this
model. This suggests that other mechanisms contribute to the decay, including longer range
couplings and control errors in the state preparation.

Some features of the second moments are worth pointing out. For small τ times, the
decay rate of the ZQ intensities (and of the signal) goes to zero, as indeed the initial state is
an equilibrium state that commutes with the dipolar Hamiltonian. Instead, M (2) has a finite
asymptote, b2/12, for τ → 0 (see equations (A.10) and (A.13)): mathematically, this is because
both the commutator and the DQ intensities go to zero with τ ; physically, this means that as
soon as some DQ term is created in the state, it will decay with a finite rate under the dipolar
Hamiltonian.

The second moments of both MQC intensities then oscillate in time with τ , with the DQ
moment always being larger than the ZQ one, M (2) > M (0). This can be understood by their
different behavior under the dipolar Hamiltonian. Consider the ZQ state, ρ

(0)

th (τ ) (first line in
equation (6)) and the ‘flip-flop’ term of the dipolar Hamiltonian,Hxx = b

∑
j(c

†
j c j+1 + c†

j+1c j). If
we had considered periodic boundary conditions (instead of an open chain), these two operators
would have commuted. Thus we expect their contribution to the second moment to be small and
decreasing with the chain length N . In contrast, the contribution of Hxx to the second moment
of ρ(2)(τ ) is on the same order as the contribution from Hzz = b

∑
j σ j

z σ j+1
z , thus yielding an

overall faster decay rate. We can understand this behavior more intuitively. Here we defined
quantum coherence with respect to the total magnetization along the z-axis [35], 6z, which
also sets the quantization axis of the system. Indeed, we only retained the part of the dipolar
interaction that commutes with 6z. Thus we expect terms in the system state that commute with
6z (such as ZQ terms) to decay more slowly than terms that do not.

It is interesting to note that both the ZQ and DQ second moments are higher when the
corresponding MQC intensity is smaller (see also figure A.1 in the appendix). By analyzing
the state in equation (6), we can see that times τ of local maxima for I (0)(τ ) correspond to
maxima for the function f pp(2τ), which indicates that the state is localized around single-
spin polarization states, σ j

z , while at other times the ZQ intensities have stronger contributions
from many-spin correlations (three and higher). Correspondingly, local maxima for I (2)(τ )

correspond to higher contributions from localized two-spin DQ states in ρ(τ), σ
j

+ σ
j+1

− . We thus
found that the decay rates depends not only on the coherence order of the state, but also on
whether the state is localized or contains a larger number of spin correlations. While these two
effects could not be distinguished clearly in 3D experiments, as it was not possible to determine
the precise states created, the 1D case provides further insights into the decay dynamics. We can
further explore these differences by studying the decay of other correlated states.

4. Comparison of initial states

In order to study the dependence of the decay rate on the coherence order and the number
of correlated spins, we evolved different initial states under the DQ Hamiltonian. Besides
the thermal state, we considered two other initial states: the ‘end-polarized’ state δρend ∝

(σ 1
z + σ N

z ) [8, 9] and a state rotated in the transverse plane, 6x =
∑

j σ j
x . We prepared the first
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Figure 5. Decay rates of the total signal as a function of evolution time τ for
different initial states: thermal state δρth (blue stars), end-polarized state δρend

(red circles); transverse polarization, δρx (black squares) and the state presenting
a broader distribution of MQC, δρxx (green triangles). The black filled square
at τ = 0 is the second moment of the free-induction decay. As the δρx(τ ) states
present oscillations in the decay (similar to the free-induction decay, see figure 2)
we fitted their decay to the function [28] A[(1 − C)sinc(m2t) e−m1t2/2 + C], with
the second moment given by M = m1 + m2

2/3. The dashed line is the analytical
model for the thermal state second moment, as in figure 4.

state by the two-pulse scheme introduced in [8], while the second state can be prepared by a
simple collective rotation of the spins.

The end-polarized state exhibits a transport-like dynamics under the DQ Hamiltonian [11];
although the transport is dispersive [31, 36], we expect the state to remain fairly localized at
short times and thus to show similar decay behavior as the thermal state. In contrast, the initial
state δρx ∼ 6x quickly evolves into many-spin correlations. Indeed, if we consider for example
evolution of the first spin in the chain δρx1 ∼ σ 1

x , we obtain

δρx1(τ )=
∑

p ∈ odd

Im[i−p f1p(τ )](c†
p + cp) − i

∑
p ∈ even

Im[i−p f1p(τ )](c†
p − cp). (12)

Here we note that the fermionic operators cp represent highly delocalized states, since we have,
e.g., c†

p + cp = σ 1
z . . . σ p−1

z σ p
x . Similar expressions can be found for the evolution of the other

spins in the chain and thus for δρx(τ ). While this state presents large spin correlations, its
coherence number is still quite low, with mostly one- and three-quantum coherences [31]. In
order to investigate the decay of larger coherence orders, we rotate the state δρx(τ ) with a π/2-
pulse around the y-axis before letting it evolve freely. The resulting state, δρxx , contains all even
quantum coherence orders with a binomial distribution and it is thus more similar to the states
that can be obtained in 3D systems [27].

We compare the decay rates (second moment) of these four different states in figure 5.
When the evolution under the DQ-Hamiltonian is short, the decay rate of δρth and δρend is small,
as expected. Although δρxx has a small decay rate at short times, since it has main contributions
from ZQ coherences, the second moment increases quickly with τ . In comparison, δρx has
a fast decay even when it has not evolved under the DQ-Hamiltonian (indeed for τ = 0 we
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recover the second moment of the free-induction decay). At larger τ the second moment still
remains slightly larger than the second moments of δρth and δρend. Indeed at larger τ all the
states becomes fairly delocalized because of the dispersive character of the equal-coupling
DQ Hamiltonian [36]. Thus these different states highlight different behaviors of multi-spin
correlated states, which depend on the number of spins in the correlated state (with faster decay
for larger spin correlation number) and separately on the coherence number.

5. Conclusions

In this paper we investigated the dependence of decoherence rate on the state characteristics
of a many-spin system. Since the decay process is non-Markovian, but it is due to a highly
correlated spin bath, we found a very rich dynamics, where decoherence rates (quantified by the
second moment of the decay) depend in a non-trivial way on the degree of localization of the
state as well as on its coherence with respect to the quantization basis. In particular we found
that large spin clusters, with correlations established among many spins, decay faster under a
correlated bath, even if their coherence order is not very large. This is in contrast to the decay
under simple dephasing, where the coherence order (and for pure states, the entanglement) is
critical in determining the decay rate [37]. While it was not possible to separate the coherence
order and the number of correlated spins in the dynamics of 3D spin systems (as they grow at
the same time), here we were able to get a deeper insight by using spin chains and exploring
different initial states. In addition we found that restricting the dynamics in one dimension slows
down the decay, which could be beneficial to create larger coherent quantum states.
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Appendix. Calculation of the second moment

Here we provide explicit expressions for the second moment of the decay under the dipolar
Hamiltonian of the thermal state evolved under the DQ Hamiltonian for a time τ . Using the
second moment to estimate the decay rate is justified by a short time expansion of the signal

S(t, τ )≈S(τ )

(
1 − M

t2

2

)
=Tr{δρ(τ)2

}

(
1 −

Tr{[Hdip, ρ(τ )][ρ(τ),Hdip]}

Trδρ(τ)2

t2

2

)
. (A.1)

We can calculate the contributions to the second moment arising from the ZQ and DQ terms of
the density operator

M (m)
=

Tr{[Hdip, ρ
(m)(τ )][ρ(m)(τ ),Hdip]}

Tr{ρ(m)(τ )ρ(−m)(τ )}
. (A.2)

Further, writing the dipolar Hamiltonian as

Hdip = 2Hzz −Hxx , Hzz =

∑
i j

bi jσ
i
z σ

j
z , Hxx =

∑
i j

bi j(σ
i
xσ

j
x + σ i

yσ
j

y ), (A.3)
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Figure A.1. Analytical solutions to second moments for N = 400 spins. Left:
second moment for the ZQ intensities (blue), DQ (red) and total signal (black).
In lighter gray: MQC intensities (I (0), ZQ, dash-dotted line, I (2), DQ, dashed
line) highlighting the anti-correlation with the momentum oscillations. For an
easier visualization, we plot I (2) + 0.625. Right: contributions of the Hxx (dash-
dotted) and Hzz (dashed) Hamiltonians to the total (solid) second momenta for
ZQ (blue lines) and DQ (red lines) intensities. We note that the second moment
from Hxx is almost zero for the ZQ intensities, the small increase at larger DQ
times τdq is due to finite-length chain effects.

we can also separate the contributions from the Hzz and Hxx parts of the dipolar Hamiltonian,
as they simply add up (there are no contributions from cross-terms). We can thus define each
contribution as

M (n)
aa = Tr

{
[Haa, ρ

(n)(τ )][Haa, ρ
(n)(τ )]

}
/(N2N ) (A.4)

yielding the total second moment

M = Mzz + 2Mxx = I (0)(M (0)
zz + 2M (0)

xx ) + I (2)(2M (2)
zz + 4M (2)

xx )/(N2N ), (A.5)

where I (m) are the MQC intensities [29] (see figure A.1)

I (0)(τ ) =
1

N

∑
k

cos(4τ cos κ)2, (A.6)

I (2)(τ ) =
1

2N

∑
k

sin(4τ cos κ)2. (A.7)

Using the state in equation (6) we find the contribution from Hzz:

Mzz =
16

N

∑
p 6=q

| f p,q(2τ)|2 −

N∑
q=2

(
| fq,q−1(2τ)|2 + | fq,q−2(2τ)|2 + | f1,q(2τ)|2

) (A.8)

which is given by the sum of the ZQ and DQ contributions (see figure A.1):

M (0)
zz I (0)

=
16

N

 ∑
p 6=q,

p−q∈ even

| f p,q(2τ)|2 −

N∑
q=2

| fq,q−2(2τ)|2 −

∑
p 6=1,

p ∈ odd

| f1,q(2τ)|2

 , (A.9)
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M (2)
zz I (2)

=
8

N

 ∑
p−q∈ odd

| f p,q(2τ)|2 −

N∑
q=1

| fq,q−1(2τ)|2 −

∑
p ∈ even

| f1,p(2τ)|2

 . (A.10)

From the commutator with Hxx we obtain

Mxx =
4(N−1)

N
−

2

N

∑
p,q

[
f p+1,q(2τ)− f p−1,q(2τ)

] [
f p,q+1(2τ)− f p,q−1(2τ)

]
(A.11)

which can be further decomposed into the ZQ and DQ components:

M (0)
xx I (0)

= Mxx(τ ) − I (2)(τ )M (2)
xx (τ ), (A.12)

M (2)
xx I (2)

=
2

N

∑
p−q ∈ odd

| f p,q(2τ) − fq−1,p+1(2τ)|2. (A.13)
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