1,616 research outputs found

    A Sparse Stress Model

    Full text link
    Force-directed layout methods constitute the most common approach to draw general graphs. Among them, stress minimization produces layouts of comparatively high quality but also imposes comparatively high computational demands. We propose a speed-up method based on the aggregation of terms in the objective function. It is akin to aggregate repulsion from far-away nodes during spring embedding but transfers the idea from the layout space into a preprocessing phase. An initial experimental study informs a method to select representatives, and subsequent more extensive experiments indicate that our method yields better approximations of minimum-stress layouts in less time than related methods.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    Simultaneous Embeddability of Two Partitions

    Full text link
    We study the simultaneous embeddability of a pair of partitions of the same underlying set into disjoint blocks. Each element of the set is mapped to a point in the plane and each block of either of the two partitions is mapped to a region that contains exactly those points that belong to the elements in the block and that is bounded by a simple closed curve. We establish three main classes of simultaneous embeddability (weak, strong, and full embeddability) that differ by increasingly strict well-formedness conditions on how different block regions are allowed to intersect. We show that these simultaneous embeddability classes are closely related to different planarity concepts of hypergraphs. For each embeddability class we give a full characterization. We show that (i) every pair of partitions has a weak simultaneous embedding, (ii) it is NP-complete to decide the existence of a strong simultaneous embedding, and (iii) the existence of a full simultaneous embedding can be tested in linear time.Comment: 17 pages, 7 figures, extended version of a paper to appear at GD 201

    Phase Transitions in Generalised Spin-Boson (Dicke) Models

    Full text link
    We consider a class of generalised single mode Dicke Hamiltonians with arbitrary boson coupling in the pseudo-spin xx-zz plane. We find exact solutions in the thermodynamic, large-spin limit as a function of the coupling angle, which allows us to continuously move between the simple dephasing and the original Dicke Hamiltonians. Only in the latter case (orthogonal static and fluctuating couplings), does the parity-symmetry induced quantum phase transition occur.Comment: 6 pages, 5 figue

    Centrality scaling in large networks

    Full text link
    Betweenness centrality lies at the core of both transport and structural vulnerability properties of complex networks, however, it is computationally costly, and its measurement for networks with millions of nodes is near impossible. By introducing a multiscale decomposition of shortest paths, we show that the contributions to betweenness coming from geodesics not longer than L obey a characteristic scaling vs L, which can be used to predict the distribution of the full centralities. The method is also illustrated on a real-world social network of 5.5*10^6 nodes and 2.7*10^7 links

    Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality

    Full text link
    We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G=(V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(\vstar^2 \cdot \log n) time per update, where n=|V|, and \vstar bounds the number of edges that lie on shortest paths through any given vertex. Our APASP algorithm can be used for the decremental computation of betweenness centrality (BC), a graph parameter that is widely used in the analysis of large complex networks. No nontrivial decremental algorithm for either problem was known prior to our work. Our method is a generalization of the decremental algorithm of Demetrescu and Italiano [DI04] for unique shortest paths, and for graphs with \vstar =O(n), we match the bound in [DI04]. Thus for graphs with a constant number of shortest paths between any pair of vertices, our algorithm maintains APASP and BC scores in amortized time O(n^2 \log n) under decremental updates, regardless of the number of edges in the graph.Comment: An extended abstract of this paper will appear in Proc. ISAAC 201

    A Regularized Graph Layout Framework for Dynamic Network Visualization

    Full text link
    Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material (animations and MATLAB toolbox) available at http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Single electron transistor strongly coupled to vibrations: Counting Statistics and Fluctuation Theorem

    Get PDF
    Using a simple quantum master equation approach, we calculate the Full Counting Statistics of a single electron transistor strongly coupled to vibrations. The Full Counting Statistics contains both the statistics of integrated particle and energy currents associated to the transferred electrons and phonons. A universal as well as an effective fluctuation theorem are derived for the general case where the various reservoir temperatures and chemical potentials are different. The first relates to the entropy production generated in the junction while the second reveals internal information of the system. The model recovers Franck-Condon blockade and potential applications to non-invasive molecular spectroscopy are discussed.Comment: extended discussion, to appear in NJ
    corecore