54 research outputs found
Electromagnetic transitions of the helium atom in superstrong magnetic fields
We investigate the electromagnetic transition probabilities for the helium
atom embedded in a superstrong magnetic field taking into account the finite
nuclear mass. We address the regime \gamma=100-10000 a.u. studying several
excited states for each symmetry, i.e. for the magnetic quantum numbers
0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry.
The oscillator strengths as a function of the magnetic field, and in particular
the influence of the finite nuclear mass on the oscillator strengths are shown
and analyzed.Comment: 10 pages, 8 figure
Helium in superstrong magnetic fields
We investigate the helium atom embedded in a superstrong magnetic field
gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing
pseudomomentum are taken into account. The influence and the magnitude of the
different finite mass effects are analyzed and discussed. Within our full
configuration interaction approach calculations are performed for the magnetic
quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive
and negative z parities. Up to six excited states for each symmetry are
studied. With increasing field strength the number of bound states decreases
rapidly and we remain with a comparatively small number of bound states for
gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.
Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields
Using a Hartree-Fock mesh method and a configuration interaction approach
based on a generalized Gaussian basis set we investigate the behaviour of the
exchange and correlation energies of small atoms and molecules, namely th e
helium and lithium atom as well as the hydrogen molecule, in the presence of a
magnetic field covering the regime B=0-100a.u. In general the importance of the
exchange energy to the binding properties of at oms or molecules increases
strongly with increasing field strength. This is due to the spin-flip
transitions and in particular due to the contributions of the tightly bound
hydrogenic state s which are involved in the corresponding ground states of
different symmetries. In contrast to the exchange energy the correlation energy
becomes less relevant with increasing field strength. This holds for the
individual configurations constituting the ground state and for the crossovers
of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.
Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization.
We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.This work was
supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (T.J.S. and B. L-L.)
and a Cancer Research UK Cambridge Cancer Centre PhD studentship (H.K.R.).This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3043.html
Matter in Strong Magnetic Fields
The properties of matter are significantly modified by strong magnetic
fields, Gauss (), as are typically
found on the surfaces of neutron stars. In such strong magnetic fields, the
Coulomb force on an electron acts as a small perturbation compared to the
magnetic force. The strong field condition can also be mimicked in laboratory
semiconductors. Because of the strong magnetic confinement of electrons
perpendicular to the field, atoms attain a much greater binding energy compared
to the zero-field case, and various other bound states become possible,
including molecular chains and three-dimensional condensed matter. This article
reviews the electronic structure of atoms, molecules and bulk matter, as well
as the thermodynamic properties of dense plasma, in strong magnetic fields,
. The focus is on the basic physical pictures and
approximate scaling relations, although various theoretical approaches and
numerical results are also discussed. For the neutron star surface composed of
light elements such as hydrogen or helium, the outermost layer constitutes a
nondegenerate, partially ionized Coulomb plasma if , and may be in
the form of a condensed liquid if the magnetic field is stronger (and
temperature K). For the iron surface, the outermost layer of the
neutron star can be in a gaseous or a condensed phase depending on the cohesive
property of the iron condensate.Comment: 45 pages with 9 figures. Many small additions/changes. Accepted for
publication in Rev. Mod. Phy
Veränderungen der Überlebensrate nach schweren Beckenverletzungen in Deutschland - Ergebnisse eine 15 Jahre Längsschnittuntersuchung
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous "Tailor-Made Fuels from Biomass (TMFB)" work. Although particulate matter emissions benefitted from the combination of anisole and DnBE, overall performance, including also indicated efficiency, load ignitability, as well as unburnt hydrocarbon and carbon monoxide emissions, was best for the diesel blend with the lowest anisole concentration of 10% and a CN of 45. Furthermore, the results suggested that CN has more impact than fuel oxygen content, with lower CN leading to improved overall performance. This improvement, however, appeared to have an optimum for CN’s in the range of 37-45. A further reduction to 30.5 or increase to 56 generally decreased overall performance
- …