24 research outputs found
Curcumin regulates intracellular calcium release and inhibits oxidative stress parameters, VEGF, and caspase-3/-9 levels in human retinal pigment epithelium cells
In this study, we aimed to observe whether curcumin (cur), a polyphenolic compound derived from the dietary spice turmeric, a yellow substance obtained from the root of the plant Curcuma longa Linn, has any protective effect against blue light irradiation in human retinal pigment epithelium (ARPE-19) cells. For this purpose, we evaluated the intracellular calcium release mechanism, poly ADP ribose polymerase (PARP), procaspase-3/-9 protein expression levels, caspase activation, and reactive oxygen species levels. ARPE-19 cells were divided into four main groups, such as control, cur, blue light, and cur + blue light. Results were evaluated by Kruskal–Wallis and Mann–Whitney U tests as post hoc tests. The cells in cur and cur + blue light samples were incubated with 20 μM cur. Blue light exposure was performed for 24 h in an incubator. Lipid peroxidation and cytosolic-free Ca2+ [Ca2+]i concentrations were higher in the blue light exposure samples than in the control samples; however, their levels were determined as significantly lower in the cur and cur + blue light exposure samples than in the blue light samples alone. PARP and procaspase-3 levels were significantly higher in blue light samples. Cur administration significantly decreased PARP and procaspase-3 expression levels. Reduced glutathione and glutathione peroxidase values were lower in the blue light exposure samples, although they were higher in the cur and cur + blue light exposure samples. Caspase-3 and -9 activities were lower in the cur samples than in the blue light samples. Moreover, vascular endothelial growth factor (VEGF) levels were significantly higher in the blue light exposure samples. In conclusion, cur strongly induced regulatory effects on oxidative stress, intracellular Ca2+ levels, VEGF levels, PARP expression levels, and caspase-3 and -9 values in an experimental oxidative stress model in ARPE-19 cells
Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats
Like several other anticancer drugs, methotrexate (MTX) causes side effects, such as neuropathic pain, hepatotoxicity, and nephrotoxicity. Abnormal production of reactive oxygen species has been suspected in the pathophysiology of MTX-induced hepatorenal toxicity. Therefore, the aim of this study was to investigate the probable protective role of vitamin C (Vit C) on oxidative stress induced by MTX in the liver and kidney tissues of rats. A total of 32 rats were randomly and equally divided into four groups. The first group served as the control group. The second group received a single dose of 20 mg/kg of MTX intraperitoneally. To demonstrate our hypothesis, the third and the fourth groups received 250 mg/kg of Vit C for 3 days by oral gavage, with or without MTX treatment. At the end of the study, the liver and kidney tissues of the rats were collected and examined using histology. Both the tissues were assayed for malondialdehyde concentration and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. In hepatic and renal tissues, lipid peroxidation levels were increased, whereas SOD, CAT, and GSH-Px levels were decreased by MTX. All parameters, including CAT levels in hepatic tissue, were significantly restored after the administration of Vit C for 3 days. Similar to the biochemical findings, evidence of oxidative damage was examined in both types of tissues by histopathological examination. From the results of this study, we were able to observe that Vit C administration modulates the antioxidant redox system and reduces the renal and hepatic oxidative stress induced by MTX. Vit C can ameliorate the toxic effect of MTX in liver and kidney tissues of rat