364 research outputs found

    A Hierarchical Context-aware Modeling Approach for Multi-aspect and Multi-granular Pronunciation Assessment

    Full text link
    Automatic Pronunciation Assessment (APA) plays a vital role in Computer-assisted Pronunciation Training (CAPT) when evaluating a second language (L2) learner's speaking proficiency. However, an apparent downside of most de facto methods is that they parallelize the modeling process throughout different speech granularities without accounting for the hierarchical and local contextual relationships among them. In light of this, a novel hierarchical approach is proposed in this paper for multi-aspect and multi-granular APA. Specifically, we first introduce the notion of sup-phonemes to explore more subtle semantic traits of L2 speakers. Second, a depth-wise separable convolution layer is exploited to better encapsulate the local context cues at the sub-word level. Finally, we use a score-restraint attention pooling mechanism to predict the sentence-level scores and optimize the component models with a multitask learning (MTL) framework. Extensive experiments carried out on a publicly-available benchmark dataset, viz. speechocean762, demonstrate the efficacy of our approach in relation to some cutting-edge baselines.Comment: Accepted to Interspeech 202

    Minute-Level Speed Identification and Assessment of Bacteria/Cells Using Electrokinetic Assistance

    Get PDF
    Conventional techniques for detection and analysis of cells/bacteria use Western blot and ELISA kits that are high cost and long time consuming. An ideal advanced biosensor (molecular or whole cells detections) unit must have several important features: rapid detection time (<15 minutes), high sensitivity (102 cells/ml for whole cell detection or sub-nM concentration for molecular detection), high specificity, small, and inexpensive instrumentation/configuration. Two novel platforms will be introduced here, including an optofluidic system for the rapid on-chip detection of bacterial infection and a cell-based biochip for the label-free assessment of drug susceptibility on cancer cells. Rapid identification of rare pathogen from a very dense human blood sample is realized through combining the hybrid electrokinetic concentration with on-chip surface-enhanced Raman spectroscopy (SERS) identification of bacteria based on their detected SERS spectra. Compared to the current method in the hospital, this simple and rapid platform accelerated the detection time from 2 days to a few minutes. The cell-based biochip uses a novel, rapid, and label-free approach- AC electric field induced electro-rotation (eROT) to evaluate the drug susceptibility of cancer cells. The isolated lung cancer cells were successfully analyzed using eROT approach for the rapid and label-free assessment of the drug susceptibility of cancer cells. eROT spectra for different drug-treated cancer cells was successfully determined to the drug resistance and susceptibilities through their frequency-dependent rotation speeds. The relationship and trend between eROT method and conventional method are very agreement

    Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo

    Get PDF
    Purpose: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. Methods: In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was applied to analyze the integrity of crystallin samples. Results: PRX at 1,000 ÎŒM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 ÎŒM. Results were further confirmed by SDS–PAGE. The absolute Îł-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 ÎŒM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 ÎŒM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 ÎŒM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 ÎŒM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 ÎŒM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 ÎŒM PRX. Conclusions: PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted

    Composite type A thymoma and diffuse large B-cell lymphoma

    Get PDF
    AbstractThe concurrent occurrence of thymoma and diffuse large B-cell lymphoma in the thymus has not been previously reported. We describe a 74-year-old man who presented with general weakness, neck lymphadenopathy, night sweats, and body weight loss. A right anterior mediastinal mass was found on computed tomography of the chest. The immunohistochemical stains AE1/AE3, CD20, CD3, and MUM-1 confirmed the different components of the mediastinal tumor. A heavy-chain gene clonality assay and light-chain gene clonality assay confirmed the B-cell clonality of the mediastinal tumor and neck lymph node. The patient had received a complete course of chemotherapy, and the result of positron emission tomography–computed tomography showed complete remission. The pathologic report of this mass revealed composite type A thymoma and diffuse large B-cell lymphoma. If concurrent or composite thymoma and lymphoma are suspected, a thorough examination of the thymoma with a combination of ancillary studies is recommended to rule out the possibility of concurrent lymphoma

    Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors

    Get PDF
    Conjugated microporous polymers (CMPs) are considered an important material, combining aspects of both microporosity and extended π-conjugation. However, pristine CMP electrodes suffer from poor electrical conductivity which limits the material in electrochemical applications. In this work, direct carbonisation of conjugated microporous polymers (CMPs) yields porosity-engineered carbons, important for the flow of ions through the electrode. These conductive carbonised CMPs show specific capacitance as high as 260 F g−1, excellent rate capability and no loss in performance after 10 000 charge/discharge cycles. This study provides a procedure to enhance the performance of CMP-based materials, opening up a new source of electroactive materials

    Mitochondrial oxidative phosphorylation complex regulates NLRP3 inflammasome activation and predicts patient survival in nasopharyngeal carcinoma

    Get PDF
    © 2020 Chung et al. We previously reported that tumor inflammasomes play a key role in tumor control and act as favorable prognostic markers in nasopharyngeal carcinoma (NPC). Activated inflammasomes frequently form distinguishable specks and govern the cellular secretion of IL-1ÎČ. However, we know little about the biological and biochemical differences between cells with and without apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) speck formation. In this study, we used proteomic iTRAQ analysis to analyze the proteomes of NPC cells that differ in their ASC speck formation upon cisplatin treatment. We identified proteins that were differentially over-expressed in cells with specks, and found that they fell into two Gene ontology (GO) pathways: mitochondrial oxidative phosphorylation (OxPhos) and ubiquinone metabolism. We observed up-regulation of various components of the OxPhos machinery (including NDUFB3, NDUFB8 and ATP5B), and subsequently found that these changes lead to mitochondrial ROS (mtROS) production, which promotes the formation and activation of NLRP3 inflammasomes and subsequent pyroptosis. In NPC patients, better local recurrence-free survival was significantly associated with high-level expression of NDUFB8 (p = 0.037) and ATP5B (p = 0.029), as examined using immunohistochemistry. However, there were no significant associations between the expression of NDUFB8 and ATP5B with overall survival of NPC patients. Together, our results demonstrate that up-regulated mitochondrial OxPhos components are strongly associated with NLRP3 inflammasome activation in NPC. Our findings further suggest that high-level expression of OxPhos components could be markers for local recurrence and/or promising therapeutic targets in patients with NPC

    Insights on Distinct Left Atrial Remodeling Between Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction

    Get PDF
    BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) commonly coexist with overlapping pathophysiology like left atrial (LA) remodeling, which might differ given different underlying mechanisms. OBJECTIVES: We sought to investigate the different patterns of LA wall remodeling in AF vs. HFpEF. METHODS: We compared LA wall characteristics including wall volume (LAWV), wall thickness (LAWT), and wall thickness heterogeneity (LAWT[SD]) and LA structure, function among the controls (without AF or HFpEF, n = 115), HFpEF alone (n = 59), AF alone (n = 37), and HFpEF+AF (n = 38) groups using multi-detector computed tomography and echocardiography. RESULTS: LA wall remodeling was most predominant and peak atrial longitudinal strain (PALS) was worst in HFpEF+AF patients as compared to the rest. Despite lower E/e' (9.8 ± 3.8 vs. 13.4 ± 6.4) yet comparable LA volume, LAWT and PALS in AF alone vs. HFpEF alone, LAWV [12.6 (11.6–15.3) vs. 12.0 (10.2–13.7); p = 0.01] and LAWT(SD) [0.68 (0.61–0.71) vs. 0.60 (0.56–0.65); p < 0.001] were significantly greater in AF alone vs. HFpEF alone even after multi-variate adjustment and propensity matching. After excluding the HFpEF+AF group, both LAWV and LAWT [SD] provided incremental values when added to PALS or LAVi (all p for net reclassification improvement <0.05) in discriminating AF alone, with LAWT[SD] yielding the largest C-statistic (0.78, 95% CI: 0.70–0.86) among all LA wall indices. CONCLUSIONS: Despite a similar extent of LA enlargement and dysfunction in HFpEF vs. AF alone, larger LAWV and LAWT [SD] can distinguish AF from HFpEF alone, suggesting the distinct underlying pathophysiological mechanism of LA remodeling in AF vs. HFpEF

    Insights on Distinct Left Atrial Remodeling Between Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction

    Get PDF
    Background: Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) commonly coexist with overlapping pathophysiology like left atrial (LA) remodeling, which might differ given different underlying mechanisms. Objectives: We sought to investigate the different patterns of LA wall remodeling in AF vs. HFpEF. Methods: We compared LA wall characteristics including wall volume (LAWV), wall thickness (LAWT), and wall thickness heterogeneity (LAWT[SD]) and LA structure, function among the controls (without AF or HFpEF, n = 115), HFpEF alone (n = 59), AF alone (n = 37), and HFpEF+AF (n = 38) groups using multi-detector computed tomography and echocardiography. Results: LA wall remodeling was most predominant and peak atrial longitudinal strain (PALS) was worst in HFpEF+AF patients as compared to the rest. Despite lower E/e' (9.8 ± 3.8 vs. 13.4 ± 6.4) yet comparable LA volume, LAWT and PALS in AF alone vs. HFpEF alone, LAWV [12.6 (11.6–15.3) vs. 12.0 (10.2–13.7); p = 0.01] and LAWT(SD) [0.68 (0.61–0.71) vs. 0.60 (0.56–0.65); p &lt; 0.001] were significantly greater in AF alone vs. HFpEF alone even after multi-variate adjustment and propensity matching. After excluding the HFpEF+AF group, both LAWV and LAWT [SD] provided incremental values when added to PALS or LAVi (all p for net reclassification improvement &lt;0.05) in discriminating AF alone, with LAWT[SD] yielding the largest C-statistic (0.78, 95% CI: 0.70–0.86) among all LA wall indices. Conclusions: Despite a similar extent of LA enlargement and dysfunction in HFpEF vs. AF alone, larger LAWV and LAWT [SD] can distinguish AF from HFpEF alone, suggesting the distinct underlying pathophysiological mechanism of LA remodeling in AF vs. HFpEF.</p

    Comparison of Calcium Balancing Strategies During Hypothermic Acclimation of Tilapia (Oreochromis mossambicus) and Goldfish (Carassius auratus)

    Get PDF
    The body temperatures of teleost species fluctuate following changes in the aquatic environment. As such, decreased water temperature lowers the rates of biochemical reactions and affects many physiological processes, including active transport-dependent ion absorption. Previous studies have focused on the impacts of low temperature on the plasma ion concentrations or membrane transporters in fishes. However, very few in vivo or organism-level studies have been performed to more thoroughly elucidate the process of acclimation to low temperatures. In the present study, we compared the strategies for cold acclimation between stenothermic tilapia and eurythermic goldfish. Whole-body calcium content was more prominently diminished in tilapia than in goldfish after long-term cold exposure. This difference can be attributed to alterations in the transportation parameters for Ca2+ influx, i.e., maximum velocity (Vmax) and binding affinity (1/Km). There was also a significant difference in the regulation of Ca2+ efflux between the two fishes. Transcript levels for Ca2+ related transporters, including the Na+/Ca2+ exchanger and epithelial Ca2+ channel, were similarly regulated in both fishes. However, upregulation of plasma membrane Ca2+ATPase expression was more pronounced in goldfish than in tilapia. In addition, enhanced Na+/K+-ATPase abundance, which provides the major driving force for ion absorption, was only detected in tilapia, while upregulated Na+/K+-ATPase activity was only detected in goldfish. Based on the results of the present study, we have found that goldfish and tilapia differentially regulate gill epithelial plasma membrane Ca2+-ATPase (PMCA) expression and Na+/K+-ATPase activity in response to cold environments. These regulatory differences are potentially linked to more effective regulation of Ca2+ influx kinetics and better maintenance of whole body calcium content in goldfish than in tilapia
    • 

    corecore