314 research outputs found

    Anti-Hyperglycemic Properties of Crude Extract and Triterpenes from Poria cocos

    Get PDF
    Poria cocos, Bai Fu Ling in Chinese, is used in traditional Chinese medicine to treat diabetes. However, its claimed benefits and mechanism are not fully understood. This study aimed to investigate the effect and action of P. cocos on type 2 diabetes. We first performed phytochemical analysis on the crude extract and factions of P. cocos. P. cocos crude extract at 50 mg/kg body weight or more significantly decreased blood glucose levels in db/db mice. Based on a bioactivity-directed fractionation and isolation (BDFI) strategy, chloroform fraction and subfractions 4 and 6 of the P. cocos crude extract possessed a blood glucose-lowering effect. Dehydrotumulosic acid, dehydrotrametenolic acid, and pachymic acid were identified from the chloroform sub-fractions 4, 3, and 2, respectively. Dehydrotumulosic acid had anti-hyperglycemic effect to a greater extent than dehydrotrametenolic acid and pachymic acid. Mechanistic study on streptozocin- (STZ-) treated mice showed that the crude extract, dehydrotumulosic acid, dehydrotrametenolic acid, and pachymic acid of P. cocos exhibited different levels of insulin sensitizer activity. However, the P. cocos crude extract and triterpenes appeared not to activate PPAR-γ pathway. Overall, the data suggest that the P. cocos extract and its triterpenes reduce postprandial blood glucose levels in db/db mice via enhanced insulin sensitivity irrespective of PPAR-γ

    Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer

    Get PDF
    This paper presents the use of spatially resolved oblique-incidence diffuse reflectance spectroscopy for skin cancer diagnosis. Spatio-spectral data from 166 pigmented skin lesions were collected for the wavelength range from 455 to 765 nm. A set of neural network based classifiers separates the pigmented malignant melanomas from the benign and dysplastic subgroups. A total of 110 lesions were used as the training set and 56 lesions were used as the testing set. This classifier performs with an overall 100% sensitivity and 92% specificity for the training set and 100% sensitivity and 88% specificity for the testing set. The second classifier was designed to separate the benign from the dysplastic subgroups. For the second classifier a total of 100 lesions were used as the training set and 51 lesions were used as the testing set. The overall classification rates were 94% and 88% for the training and testing sets respectively

    Quantum correlation generation capability of experimental processes

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, we introduce a method for characterizing the creation of EPR steering and Bell nonlocality for dynamical processes in experiments. We show that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. We demonstrate this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that our method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.Comment: 5 figures, 3 appendice

    Nanoscaled biphasic calcium phosphate modulates osteogenesis and attenuates LPS-induced inflammation

    Get PDF
    Micron-scale structure biphasic calcium phosphate (BCP) materials have demonstrated promising clinical outcomes in the field of bone tissue repair. However, research on biphasic calcium phosphate materials at the nanoscale level remains limited. In this study, we synthesize granular-shaped biphasic calcium phosphate nanomaterials with multiple desirable characteristics, including negatively charged surfaces, non-cytotoxicity, and the capability to penetrate cells, using a nanogrinding dispersion process with a polymeric carboxylic acid as the dispersant. Our results reveal that treating human osteoblasts with 0.5 μg/mL biphasic calcium phosphate nanomaterials results in a marked increase in alkaline phosphatase (ALP) activity and the upregulation of osteogenesis-related genes. Furthermore, these biphasic calcium phosphate nanomaterials exhibit immunomodulatory properties. Treatment of THP-1-derived macrophages with BCP nanomaterials decreases the expression of various inflammatory genes. Biphasic calcium phosphate nanomaterials also mitigate the elevated inflammatory gene expression and protein production triggered by lipopolysaccharide (LPS) exposure in THP-1-derived macrophages. Notably, we observe that biphasic calcium phosphate nanomaterials have the capacity to reverse the detrimental effects of LPS-stimulated macrophage-conditioned medium on osteoblastic activity and mineralization. These findings underscore the potential utility of biphasic calcium phosphate nanomaterials in clinical settings for the repair and regeneration of bone tissue. In conclusion, this study highlights the material properties and positive effects of biphasic calcium phosphate nanomaterials on osteogenesis and immune regulation, opening a promising avenue for further research on inflammatory osteolysis in patients undergoing clinical surgery

    Effect of Antrodia

    Get PDF
    Antrodia camphorata is a rare Taiwanese medicinal mushroom. Antrodia camphorata extract has been reported to exhibit antioxidant, anti-inflammation, antimetastasis, and anticancer activities and plays a role in liver fibrosis, vasorelaxation, and immunomodulation. Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Platelet activation plays a crucial role in intravascular thrombosis, which is involved in a wide variety of cardiovascular diseases. However, the effect of Antrodia camphorata on platelet activation remains unclear. We examined the effects of Antrodia camphorata on platelet activation. In the present study, Antrodia camphorata treatment (56–224 μg/mL) inhibited platelet aggregation induced by collagen, but not U46619, an analogue of thromboxane A2, thrombin, and arachidonic acid. Antrodia camphorata inhibited collagen-induced calcium (Ca2+) mobilization and phosphorylation of protein kinase C (PKC) and Akt. In addition, Antrodia camphorata significantly reduced the aggregation and phosphorylation of PKC in phorbol-12, 13-dibutyrate (PDBu) activated platelets. In conclusion, Antrodia camphorata may inhibit platelet activation by inhibiting of Ca2+ and PKC cascade and the Akt pathway. Our study suggests that Antrodia camphorata may be a potential therapeutic agent for preventing or treating thromboembolic disorders
    corecore