236 research outputs found

    Mixing and general circulation dynamics : theory and observations

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1987This thesis studies the role of cross-isopycnal mixing in general circulation dynamics, from both the theoretical and observational points of view. The first two chapters discuss some theoretical aspects of cross-isopycnal mixing in the oceans. In chapter one, an integral constraint relating the interior stratification and air-sea heat fluxes is derived, based on the condition that the total mass of water of given density is constant in a steady state ocean. Two simple models are then used to examine the way the numerically small mixing, together with air-sea fluxes, determines the average vertical density stratification of the oceans, and the deep buoyancy driven circulation. In chapter two, a more complete model of a deep flow driven by cross isopycnal diffusion is presented, motivated by the Mediterranean outflow into the North Atlantic. Mixing in this model is responsible for the determination of the detailed structure of the flow and density field, while in the models of the first chapter it was allowed to determine only the average vertical density stratification. In chapter three, a hydrographic data set from the Mediterranean sea is analyzed by inverse methods. The purpose is to examine the importance of mixing when trying to explain tracer distributions in the ocean. The time-mean circulation and the appropriate mixing coefficients are calculated from the hydrographic data. We conclude that the numerically small cross isopycnal mixing processes are crucial to the dynamics, yet difficult to parameterize and measure using available hydrographic data.NSF grants OCE-8521685 and OCE-8017791 supported me during my studies in the joint program

    Applying engineering feedback analysis tools to climate dynamics

    Get PDF
    The application of feedback analysis tools from engineering control theory to problems in climate dynamics is discussed through two examples. First, the feedback coupling between the thermohaline circulation and wind-driven circulation in the North Atlantic Ocean is analyzed with a relatively simple model, in order to better understand the coupled system dynamics. The simulation behavior is compared with analysis using root locus (in the linear regime) and describing functions (to predict limit cycle amplitude). The second example does not directly involve feedback, but rather uses simulation-based identification of low-order dynamics to understand parameter sensitivity in a model of El Nino/Southern Oscillation dynamics. The eigenvalue and eigenvector sensitivity can be used both to better understand physics and to tune more complex models. Finally, additional applications are discussed where control tools may be relevant to understand existing feedbacks in the climate system, or even to introduce new ones

    Methods of testing parameterizations: Vertical ocean mixing

    Get PDF
    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models

    Interaction and Variability of Ice Streams under a Triple-Valued Sliding Law and Non-Newtonian Rheology

    Get PDF
    Ice streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant and change their path. We study the dynamics of ice streams using an idealized model of an isothermal and power law viscous ice flow that includes horizontal (lateral) shear stresses. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed because of the flow over a flat bed, fed from an upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice stream shear margins and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple-valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.Earth and Planetary Science
    corecore