6 research outputs found

    A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15

    Get PDF
    Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6C(high), infiltrating inflammatory Ly6C(high), and reparative Ly6C(low) macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs])

    The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization

    Get PDF
    Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages

    The BACH1-HMOX1 regulatory axis is indispensable for proper macrophage subtype specification and skeletal muscle regeneration

    No full text
    The infiltration and subsequent in situ subtype specification of monocytes to effector/inflammatory and repair macrophages is indispensable for tissue repair upon acute sterile injury. However, the chromatin-level mediators and regulatory events controlling this highly dynamic macrophage phenotype switch are not known. In this study, we used a murine acute muscle injury model to assess global chromatin accessibility and gene expression dynamics in infiltrating macrophages during sterile physiological inflammation and tissue regeneration. We identified a heme-binding transcriptional repressor, BACH1, as a novel regulator of this process. Bach1 knockout mice displayed impaired muscle regeneration, altered dynamics of the macrophage phenotype transition, and transcriptional deregulation of key inflammatory and repair-related genes. We also found that BACH1 directly binds to and regulates distal regulatory elements of these genes, suggesting a novel role for BACH1 in controlling a broad spectrum of the repair response genes in macrophages upon injury. Inactivation of heme oxygenase-1 (Hmox1), one of the most stringently deregulated genes in the Bach1 knockout in macrophages, impairs muscle regeneration by changing the dynamics of the macrophage phenotype switch. Collectively, our data suggest the existence of a heme-BACH1-HMOX1 regulatory axis, that controls the phenotype and function of the infiltrating myeloid cells upon tissue damage, shaping the overall tissue repair kinetics. Copyright © 2019 by The American Association of Immunologists, Inc

    The nuclear receptor PPARγ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory

    No full text
    Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization
    corecore