2,472 research outputs found
Exact Solution of a Monomer-Dimer Problem: A Single Boundary Monomer on a Non-Bipartite Lattice
We solve the monomer-dimer problem on a non-bipartite lattice, the simple
quartic lattice with cylindrical boundary conditions, with a single monomer
residing on the boundary. Due to the non-bipartite nature of the lattice, the
well-known method of a Temperley bijection of solving single-monomer problems
cannot be used. In this paper we derive the solution by mapping the problem
onto one on close-packed dimers on a related lattice. Finite-size analysis of
the solution is carried out. We find from asymptotic expansions of the free
energy that the central charge in the logarithmic conformal field theory
assumes the value .Comment: 15 pages, 1 figure, submitted to Phy. Rev. E; v2: revised
Acknowledgment
The Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary
We consider the dimer-monomer problem for the rectangular lattice. By mapping
the problem into one of close-packed dimers on an extended lattice, we rederive
the Tzeng-Wu solution for a single monomer on the boundary by evaluating a
Pfaffian. We also clarify the mathematical content of the Tzeng-Wu solution by
identifying it as the product of the nonzero eigenvalues of the Kasteleyn
matrix.Comment: 4 Pages to appear in the Physical Review E (2006
Exploring quantum phase transitions by the cross derivative of the ground state energy
In this work, the cross derivative of the Gibbs free energy, initially
proposed for phase transitions in classical spin models [Phys. Rev. B 101,
165123 (2020)], is extended for quantum systems. We take the spin-1 XXZ chain
with anisotropies as an example to demonstrate its effectiveness and
convenience for the Gaussian-type quantum phase transitions therein. These
higher-order transitions are very challenging to determine by conventional
methods. From the cross derivative with respect to the two anisotropic
strengths, a single valley structure is observed clearly in each system size.
The finite-size extrapolation of the valley depth shows a perfect logarithmic
divergence, signaling the onset of a phase transition. Meanwhile, the critical
point and the critical exponent for the correlation length are obtained by a
power-law fitting of the valley location in each size. The results are well
consistent with the best estimations in the literature. Its application to
other quantum systems with continuous phase transitions is also discussed
briefly.Comment: 7 pages, 7 figure
Theory of impedance networks: The two-point impedance and LC resonances
We present a formulation of the determination of the impedance between any
two nodes in an impedance network. An impedance network is described by its
Laplacian matrix L which has generally complex matrix elements. We show that by
solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the
effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p}
- u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically
equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting
of inductances (L) and capacitances (C), the formulation leads to the
occurrence of resonances at frequencies associated with the vanishing of
lambda_a. This curious result suggests the possibility of practical
applications to resonant circuits. Our formulation is illustrated by explicit
examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63)
correcte
Theory of resistor networks: The two-point resistance
The resistance between arbitrary two nodes in a resistor network is obtained
in terms of the eigenvalues and eigenfunctions of the Laplacian matrix
associated with the network. Explicit formulas for two-point resistances are
deduced for regular lattices in one, two, and three dimensions under various
boundary conditions including that of a Moebius strip and a Klein bottle. The
emphasis is on lattices of finite sizes. We also deduce summation and product
identities which can be used to analyze large-size expansions of two-and-higher
dimensional lattices.Comment: 30 pages, 5 figures now included; typos in Example 1 correcte
Spanning Trees on Graphs and Lattices in d Dimensions
The problem of enumerating spanning trees on graphs and lattices is
considered. We obtain bounds on the number of spanning trees and
establish inequalities relating the numbers of spanning trees of different
graphs or lattices. A general formulation is presented for the enumeration of
spanning trees on lattices in dimensions, and is applied to the
hypercubic, body-centered cubic, face-centered cubic, and specific planar
lattices including the kagom\'e, diced, 4-8-8 (bathroom-tile), Union Jack, and
3-12-12 lattices. This leads to closed-form expressions for for these
lattices of finite sizes. We prove a theorem concerning the classes of graphs
and lattices with the property that
as the number of vertices , where is a finite
nonzero constant. This includes the bulk limit of lattices in any spatial
dimension, and also sections of lattices whose lengths in some dimensions go to
infinity while others are finite. We evaluate exactly for the
lattices we considered, and discuss the dependence of on d and the
lattice coordination number. We also establish a relation connecting to the free energy of the critical Ising model for planar lattices .Comment: 28 pages, latex, 1 postscript figure, J. Phys. A, in pres
Influence of realistic parameters on state-of-the-art LWFA experiments
We examine the influence of non-ideal plasma-density and non-Gaussian
transverse laser-intensity profiles in the laser wakefield accelerator
analytically and numerically. We find that the characteristic amplitude and
scale length of longitudinal density fluctuations impacts on the final energies
achieved by electron bunches. Conditions that minimize the role of the
longitudinal plasma density fluctuations are found. The influence of higher
order Laguerre-Gaussian laser pulses is also investigated. We find that higher
order laser modes typically lead to lower energy gains. Certain combinations of
higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and
Controlled Fusio
Ising model on nonorientable surfaces: Exact solution for the Moebius strip and the Klein bottle
Closed-form expressions are obtained for the partition function of the Ising
model on an M x N simple-quartic lattice embedded on a Moebius strip and a
Klein bottle for finite M and N. The finite-size effects at criticality are
analyzed and compared with those under cylindrical and toroidal boundary
conditions. Our analysis confirms that the central charge is c=1/2.Comment: 8 pages, 3 eps figure
- …