24 research outputs found

    An Application of Gaussian Process Modeling for High-order Accurate Adaptive Mesh Refinement Prolongation

    Full text link
    We present a new polynomial-free prolongation scheme for Adaptive Mesh Refinement (AMR) simulations of compressible and incompressible computational fluid dynamics. The new method is constructed using a multi-dimensional kernel-based Gaussian Process (GP) prolongation model. The formulation for this scheme was inspired by the GP methods introduced by A. Reyes et al. (A New Class of High-Order Methods for Fluid Dynamics Simulation using Gaussian Process Modeling, Journal of Scientific Computing, 76 (2017), 443-480; A variable high-order shock-capturing finite difference method with GP-WENO, Journal of Computational Physics, 381 (2019), 189-217). In this paper, we extend the previous GP interpolations and reconstructions to a new GP-based AMR prolongation method that delivers a high-order accurate prolongation of data from coarse to fine grids on AMR grid hierarchies. In compressible flow simulations special care is necessary to handle shocks and discontinuities in a stable manner. To meet this, we utilize the shock handling strategy using the GP-based smoothness indicators developed in the previous GP work by A. Reyes et al. We demonstrate the efficacy of the GP-AMR method in a series of testsuite problems using the AMReX library, in which the GP-AMR method has been implemented

    The Post-Merger Magnetized Evolution of White Dwarf Binaries: The Double-Degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    Get PDF
    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths 2×108\sim 2 \times 10^8 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.Comment: Accepted ApJ version published on 8/20/13, with significant additional text added discussing the nature of the magnetized outflows, and possible CSM observational features relevant to NaID detection

    Feasibility and Performance of the Staged Z-Pinch: A One-dimensional Study with FLASH and MACH2

    Full text link
    Z-pinch platforms constitute a promising pathway to fusion energy research. Here, we present a one-dimensional numerical study of the staged Z-pinch (SZP) concept using the FLASH and MACH2 codes. We discuss the verification of the codes using two analytical benchmarks that include Z-pinch-relevant physics, building confidence on the codes' ability to model such experiments. Then, FLASH is used to simulate two different SZP configurations: a xenon gas-puff liner (SZP1*) and a silver solid liner (SZP2). The SZP2 results are compared against previously published MACH2 results, and a new code-to-code comparison on SZP1* is presented. Using an ideal equation of state and analytical transport coefficients, FLASH yields a fuel convergence ratio (CR) of approximately 39 and a mass-averaged fuel ion temperature slightly below 1 keV for the SZP2 scheme, significantly lower than the full-physics MACH2 prediction. For the new SZP1* configuration, full-physics FLASH simulations furnish large and inherently unstable CRs (> 300), but achieve fuel ion temperatures of many keV. While MACH2 also predicts high temperatures, the fuel stagnates at a smaller CR. The integrated code-to-code comparison reveals how magnetic insulation, heat conduction, and radiation transport affect platform performance and the feasibility of the SZP concept

    PLUTO

    No full text
    corecore