71 research outputs found

    Genetics of Myasthenia Gravis: A Case-Control Association Study in the Hellenic Population

    Get PDF
    Myasthenia gravis (MG) is an heterogeneous autoimmune disease characterized by the production of autoantibodies against proteins of the postsynaptic membrane, in the neuromuscular junction. The contribution of genetic factors to MG susceptibility has been evaluated through family and twin studies however, the precise genetic background of the disease remains elusive. We conducted a case-control association study in 101 unrelated MG patients of Hellenic origin and 101 healthy volunteers in order to assess the involvement of common genetic variants in susceptibility to MG. We focused on three candidate genes which have been clearly associated with several autoimmune diseases, aiming to investigate their potential implication in MG pathogenesis. These are interferon regulatory factor 5 (IRF-5), TNFα-induced protein 3 (TNFAIP3), also known as A20, and interleukin-10 (IL-10), key molecules in the regulation of immune function. A statistical trend of association (P=0.068) between IL-10 promoter single nucleotide polymorphisms (SNPs) and the subgroups of early and late-onset MG patients was revealed. No statistically significant differences were observed in the rest of the variants examined. As far as we are aware, this is the first worldwide attempt to address the possible association between IRF-5 and TNFAIP3 common genetic variants and the genetic basis of MG

    Llama Antibody Fragments Recognizing Various Epitopes of the CD4bs Neutralize a Broad Range of HIV-1 Subtypes A, B and C

    Get PDF
    Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides

    Detection of antibodies directed against the cytoplasmic region of the human acetylcholine receptor in sera from myasthenia gravis patients

    No full text
    The nicotinic acetylcholine receptor (AChR) is the autoantigen in the human autoimmune disease myasthenia gravis (MG). Anti-AChR antibodies in MG sera bind mainly to conformational epitopes, therefore the determination of their specificities requires the use of native AChR. Antibody competition studies suggest that most MG antibodies are directed against the extracellular part of the molecule, whereas antibodies directed against the cytoplasmic region of the AChR have not been detected. To determine whether even small quantities of such antibodies exist in MG sera, we performed competition experiments based on the inhibition by MG sera of the binding of MoAbs to the human AChR, rather than inhibition by MoAbs of the binding of MG sera performed earlier. When MoAbs directed against cytoplasmic epitopes on the α or β subunits (α373–380 and β354–360) were used as test MoAbs, 17% or 9% of MG sera inhibited the binding of the anti-α or anti-β subunit MoAbs, respectively, by ≥ 50%. Non-specific inhibition was excluded. These results suggest the presence, in several MG sera, of antibodies directed against cytoplasmic regions of the AChR; yet these antibodies seemed to represent a relatively small proportion of the total anti-AChR antibodies. The corresponding epitopes may be involved in the inducing mechanisms in certain MG cases, and knowledge of the presence of such antibodies may be useful in understanding the autoimmune mechanism involved in MG

    Targeting therapy to the neuromuscular junction: Proof of concept

    No full text
    INTRODUCTION: The site of pathology in myasthenia gravis (MG) is the neuromuscular junction (NMJ). Our goal was to determine the ability to direct complement inhibition to the NMJ. Methods: A single-chain antibody directed against the alpha subunit of the acetylcholine receptor was synthesized (scFv-35) and coupled to decay-accelerating factor (DAF, scFv-35-DAF). scFv-35-DAF was tested in a passive model of experimentally acquired MG. Results: Administration of scFv-35-DAF to mice deficient in intrinsic complement inhibitors produced no weakness despite confirmation of its localization to the NMJ and no evidence of tissue destruction related to complement activation. Rats with experimentally acquired MG treated with scFV-35-DAF showed less weakness and a reduction of complement deposition. CONCLUSIONS: We demonstrate a method to effectively target a therapeutic agent to the NMJ. Muscle Nerv

    Epitopes expressed in myasthenia gravis (MG) thymomas are not recognized by patients' T cells or autoantibodies

    No full text
    Most thymic epithelial tumours that associate with MG express an epitope that resembles the sequence α373–380 from the cytoplasmic loop of the acetylcholine receptor (AChR). It has been proposed that sensitization to this linear epitope initiates autoimmunity to the AChR in thymoma-associated MG. We therefore tested whether MG/thymoma patients have T cell responses or antibodies to this region of the AChR. We found no significant recognition of the α309–417 region by their thymoma or peripheral blood T cells, or by their serum anti-AChR antibodies. Instead, the T cell epitopes that were recognized, like the previously characterized B cell epitopes, were in the extracellular AChR domain

    Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor which protect the receptor from myasthenic autoantibodies.

    No full text
    In the autoimmune disease myasthenia gravis (MG), antibodies against the muscle nicotinic acetylcholine receptor (AChR) cause loss of functional AChR in the neuromuscular junction. To isolate AChR-specific human antibody fragments (Fab), a phage-display library was constructed from an MG patient's thymic B lymphocytes. The first Fab isolated had a low affinity for human AChR, but two sequential antibody chain shufflings using the MG donor heavy and light chain gene repertoires resulted in isolating two new Fab with an approximately 30-fold higher binding ability. The selected Fab contained extensively mutated heavy and light chains and probably represent intraclonal variants of a common progenitor having diverged in vivo by somatic hypermutation. Interestingly, the isolated Fab bound to an extracellular highly immunogenic region located either on an alpha-subunit site affected by the gamma/epsilon-subunits or on the interface between alpha- and gamma/epsilon-subunits. This region is not the previously described "main immunogenic region" (MIR), although it seems to be close to it, as one improved Fab and an anti-MIR mAb competed for AChR binding with distinctly different subpopulations of MG sera. Furthermore, this Fab protected surface AChR in cell cultures against MG autoantibody-induced antigenic modulation, suggesting a potential therapeutic use in MG, especially in combination with a human anti-MIR Fab

    Étude par RMN-2D des interactions antigène-anticorps : reconnaissance des analogues décapeptidiques du fragment α67-76 du récepteur RACh par les anticorps anti-RACh

    No full text
    Nous avons étudié par RMN-2D (COSY et NOESY) les propriétés conformationnelles de la séquence décapeptidique α67-76 (WNPADYGGIK) dans le récepteur RACh du poisson torpille et d’une série d’analogues, obtenus en substituant chaque résidu par une alanine, à l’état libre dans le DMSO et à l’état complexe (dans H2O) avec un anticorps monoclonal (mAb6) obtenu en immunisant des rats contre le récepteur RACh
    • …
    corecore