8 research outputs found

    IPEM Topical Report: an international IPEM survey of MRI use for external beam radiotherapy treatment planning

    Get PDF
    Introduction/Background: Despite growing interest in magnetic resonance imaging (MRI), integration in external beam radiotherapy (EBRT) treatment planning uptake varies globally. In order to understand the current international landscape of MRI in EBRT a survey has been performed in 11 countries. This work reports on differences and common themes identified. Methods: A multi-disciplinary Institute of Physics and Engineering in Medicine working party modified a survey previously used in the UK to understand current practice using MRI for EBRT treatment planning, investigate how MRI is currently used and managed as well as identify knowledge gaps. It was distributed electronically within 11 countries: Australia, Belgium, Denmark, Finland, France, Italy, the Netherlands, New Zealand, Sweden, the UK and the USA. Results: The survey response rate within the USA was <1% and hence these results omitted from the analysis. In the other 10 countries the survey had a median response rate of 77% per country. Direct MRI access, defined as either having a dedicated MRI scanner for radiotherapy (RT) or access to a radiology MRI scanner, varied between countries. France, Italy and the UK reported the lowest direct MRI access rates and all other countries reported direct access in ≥82% of centres. Whilst ≥83% of centres in Denmark and Sweden reported having dedicated MRI scanners for EBRT, all other countries reported ≤29%. Anatomical sites receiving MRI for EBRT varied between countries with brain, prostate, head and neck being most common. Commissioning and QA of image registration and MRI scanners varied greatly, as did MRI sequences performed, staffing models and training given to different staff groups. The lack of financial reimbursement for MR was a consistent barrier for MRI implementation for RT for all countries and MR access was a reported important barrier for all countries except Sweden and Denmark. Conclusion: No country has a comprehensive approach for MR in EBRT adoption and financial barriers are present worldwide. Variations between countries in practice, equipment, staffing models, training, QA and MRI sequences have been identified, and are likely to be due to differences in funding as well as a lack of consensus or guidelines in the literature. Access to dedicated MR for EBRT is limited in all but Sweden and Denmark, but in all countries there are financial challenges with ongoing per patient costs. Despite these challenges, significant interest exists in increasing MR guided EBRT planning over the next 5 years

    Patient position verification in magnetic-resonance imaging only radiotherapy of anal and rectal cancers

    Get PDF
    Background and Purpose: Magnetic resonance (MR)-only treatment pathways require either the MR-simulation or synthetic-computed tomography (sCT) as an alternative reference image for cone beam computed tomography (CBCT) patient position verification. This study assessed whether using T2 MR or sCT as CBCT reference images introduces systematic registration errors as compared to CT for anal and rectal cancers. Materials and Methods: A total of 32 patients (18 rectum,14 anus) received pre-treatment CT- and T2 MR- simulation. Routine treatment CBCTs were acquired. sCTs were generated using a validated research model. The local clinical registration protocol, using a grey-scale registration algorithm, was performed for 216 CBCTs using CT, MR and sCT as the reference image. Linear mixed effects modelling identified systematic differences between modalities. Results: Systematic translation and rotation differences to CT for MR were −0.3 to + 0.3 mm and −0.1 to 0.4° for anal cancers and −0.4 to 0.0 mm and 0.0 to 0.1° for rectal cancers, and for sCT were −0.4 to + 0.8 mm, −0.1 to 0.2° for anal cancers and −0.6 to + 0.2 mm, −0.1 to + 0.1° for rectal cancers. Conclusions: T2 MR or sCT can successfully be used as reference images for anal and rectal cancer CBCT position verification with systematic differences to CT <±1 mm and <±0.5°. Clinical enabling of alternative modalities as reference images by vendors is required to reduce challenges associated with their use

    Feasibility of magnetic resonance imaging-only rectum radiotherapy with a commercial synthetic computed tomography generation solution

    No full text
    Background and purpose: Synthetic computed tomography (sCT) images enable magnetic resonance (MR)-based dose calculations. This work investigated whether a commercially available sCT generation solution was suitable for accurate dose calculations and position verification on patients with rectal cancer. Material and methods: For twenty rectal cancer patients computed tomography (CT) images were rigidly registered to sCT images. Clinical volumetric modulated arc therapy plans were recalculated on registered CT and sCT images. Dose deviations were determined through gamma and voxelwise analysis. The impact on position verification was investigated by identifying differences in translations and rotation between cone-beam CT (CBCT) to CT and CBCT to sCT registrations. Results: Across twenty patients, within a threshold of 90% of the prescription dose, a gamma analysis (2%, 2 mm) mean pass rate of 95.2 ± 4.0% (±1σ) and mean dose deviation of −0.3 ± 0.2% of prescription dose were obtained. The mean difference of translations and rotations over ten patients (76 CBCTs) was <1 mm and <0.5° in all directions. In the sole posterior-anterior direction a mean systematic shift of 0.7 ± 0.6 mm was found. Conclusions: Accurate MR-based dose calculations using a commercial sCT generation method were clinically feasible for treatment of rectal cancer patients. The accuracy of position verification was clinically acceptable. However, before clinical implementation future investigations will be performed to determine the origin of the systematic shift

    Feasibility of magnetic resonance imaging-only rectum radiotherapy with a commercial synthetic computed tomography generation solution

    No full text
    Background and purpose: Synthetic computed tomography (sCT) images enable magnetic resonance (MR)-based dose calculations. This work investigated whether a commercially available sCT generation solution was suitable for accurate dose calculations and position verification on patients with rectal cancer. Material and methods: For twenty rectal cancer patients computed tomography (CT) images were rigidly registered to sCT images. Clinical volumetric modulated arc therapy plans were recalculated on registered CT and sCT images. Dose deviations were determined through gamma and voxelwise analysis. The impact on position verification was investigated by identifying differences in translations and rotation between cone-beam CT (CBCT) to CT and CBCT to sCT registrations. Results: Across twenty patients, within a threshold of 90% of the prescription dose, a gamma analysis (2%, 2 mm) mean pass rate of 95.2 ± 4.0% (±1σ) and mean dose deviation of −0.3 ± 0.2% of prescription dose were obtained. The mean difference of translations and rotations over ten patients (76 CBCTs) was <1 mm and <0.5° in all directions. In the sole posterior-anterior direction a mean systematic shift of 0.7 ± 0.6 mm was found. Conclusions: Accurate MR-based dose calculations using a commercial sCT generation method were clinically feasible for treatment of rectal cancer patients. The accuracy of position verification was clinically acceptable. However, before clinical implementation future investigations will be performed to determine the origin of the systematic shift

    IPEM Topical Report: An international IPEM survey of MRI use for external beam radiotherapy treatment planning

    Get PDF
    Introduction/Background: Despite growing interest in Magnetic Resonance Imaging (MRI), integration in external beam radiotherapy (EBRT) treatment planning uptake varies globally. In order to understand the current international landscape of MRI in EBRT a survey has been performed in 11 countries. This work reports on differences and common themes identified. Methods: A multi-disciplinary Institute of Physics and Engineering in Medicine (IPEM) working party modified a survey previously used in the UK to understand current practice using MRI for EBRT treatment planning, investigate how MRI is currently used and managed as well as identify knowledge gaps. It was distributed electronically within 11 countries: Australia, Belgium, Denmark, Finland, France, Italy, the Netherlands, New Zealand, Sweden, the UK and the USA. Results: The survey response rate within the USA was <1% and hence these results omitted from the analysis. In the other 10 countries the survey had a median response rate of 77% per country. Direct MRI access, defined as either having a dedicated MRI scanner for radiotherapy (RT) or access to a radiology MRI scanner, varied between countries. France, Italy and the UK reported the lowest direct MRI access rates and all other countries reported direct access in ≥82% of centres. Whilst ≥83% of centres in Denmark and Sweden reported having dedicated MRI scanners for EBRT, all other countries reported ≤29%. Anatomical sites receiving MRI for EBRT varied between countries, with brain/prostate/head and neck being most common. Commissioning and QA of image registration and MRI scanners varied greatly, as did MRI sequences performed, staffing models and training given to different staff groups. The lack of financial reimbursement for MR was a consistent barrier for MRI implementation for RT for all countries and MR access was a reported important barrier for all countries except Sweden and Denmark. Conclusion: No country has a comprehensive approach for MR in EBRT adoption and financial barriers are present worldwide. Variations between countries in practice/equipment/staffing models and training/QA/MRI sequences have been identified, and are likely to be due to differences in funding as well as a lack of consensus or guidelines in the literature. Access to dedicated MR for EBRT is limited in all but Sweden and Denmark, but in all countries there are financial challenges with ongoing per patient costs. Despite these challenges, significant interest exists in increasing MR guided EBRT planning over the next 5 years
    corecore