2,575 research outputs found
Extreme distributions of ground winds /3 to 150 meters/ at Cape Kennedy, Florida
Statistical analysis of wind distribution probabilities at Cape Kenned
Probing Dark Matter
Recent novel observations have probed the baryonic fraction of the galactic
dark matter that has eluded astronomers for decades. Late in 1993, the MACHO
and EROS collaborations announced in this journal the detection of transient
and achromatic brightenings of a handful of stars in the Large Magellanic Cloud
that are best interpreted as gravitational microlensing by low-mass foreground
objects (MACHOS). This tantalized astronomers, for it implied that the
population of cool, compact objects these lenses represent could be the elusive
dark matter of our galactic halo. A year later in 1994, Sackett et al. reported
the discovery of a red halo in the galaxy NGC 5907 that seems to follow the
inferred radial distribution of its dark matter. This suggested that dwarf
stars could constitute its missing component. Since NGC 5907 is similar to the
Milky Way in type and radius, some surmised that the solution of the galactic
dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et
al., using the Wide-Field Camera of the recently repaired Hubble Space
Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in
Nature 373, 191 (1995
A detection pipeline for galactic binaries in LISA data
The Galaxy is suspected to contain hundreds of millions of binary white dwarf
systems, a large fraction of which will have sufficiently small orbital period
to emit gravitational radiation in band for space-based gravitational wave
detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main
science goal is the detection of cosmological events (supermassive black hole
mergers, etc.) however the gravitational signal from the galaxy will be the
dominant contribution to the data -- including instrumental noise -- over
approximately two decades in frequency. The catalogue of detectable binary
systems will serve as an unparalleled means of studying the Galaxy.
Furthermore, to maximize the scientific return from the mission, the data must
be "cleansed" of the galactic foreground. We will present an algorithm that can
accurately resolve and subtract >10000 of these sources from simulated data
supplied by the Mock LISA Data Challenge Task Force. Using the time evolution
of the gravitational wave frequency, we will reconstruct the position of the
recovered binaries and show how LISA will sample the entire compact binary
population in the Galaxy.Comment: 12 pages, 8 figure
A Bayesian Approach to the Detection Problem in Gravitational Wave Astronomy
The analysis of data from gravitational wave detectors can be divided into
three phases: search, characterization, and evaluation. The evaluation of the
detection - determining whether a candidate event is astrophysical in origin or
some artifact created by instrument noise - is a crucial step in the analysis.
The on-going analyses of data from ground based detectors employ a frequentist
approach to the detection problem. A detection statistic is chosen, for which
background levels and detection efficiencies are estimated from Monte Carlo
studies. This approach frames the detection problem in terms of an infinite
collection of trials, with the actual measurement corresponding to some
realization of this hypothetical set. Here we explore an alternative, Bayesian
approach to the detection problem, that considers prior information and the
actual data in hand. Our particular focus is on the computational techniques
used to implement the Bayesian analysis. We find that the Parallel Tempered
Markov Chain Monte Carlo (PTMCMC) algorithm is able to address all three phases
of the anaylsis in a coherent framework. The signals are found by locating the
posterior modes, the model parameters are characterized by mapping out the
joint posterior distribution, and finally, the model evidence is computed by
thermodynamic integration. As a demonstration, we consider the detection
problem of selecting between models describing the data as instrument noise, or
instrument noise plus the signal from a single compact galactic binary. The
evidence ratios, or Bayes factors, computed by the PTMCMC algorithm are found
to be in close agreement with those computed using a Reversible Jump Markov
Chain Monte Carlo algorithm.Comment: 19 pages, 12 figures, revised to address referee's comment
Anisotropic s-wave superconductivity in single crystals CaAlSi from penetration depth measurements
In- and out-of-plane London penetration depths were measured in single
crystals CaAlSi (T_{c}=6.2 K and 7.3 K) using a tunnel-diode resonator. A full
3D BCS analysis of the superfluid density is consistent with a prolate
spheroidal gap, with a weak-coupling BCS value in the ab-plane and stronger
coupling along the c-axis. The gap anisotropy was found to significantly
decrease for higher T_{c} samples.Comment: 4 page
Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration
The weak-lensing science of the LSST project drives the need to carefully
model and separate the instrumental artifacts from the intrinsic lensing
signal. The dominant source of the systematics for all ground based telescopes
is the spatial correlation of the PSF modulated by both atmospheric turbulence
and optical aberrations. In this paper, we present a full FOV simulation of the
LSST images by modeling both the atmosphere and the telescope optics with the
most current data for the telescope specifications and the environment. To
simulate the effects of atmospheric turbulence, we generated six-layer phase
screens with the parameters estimated from the on-site measurements. For the
optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane
data to introduce realistic aberrations and focal plane height fluctuations.
Although this expected flatness deviation for LSST is small compared with that
of other existing cameras, the fast f-ratio of the LSST optics makes this focal
plane flatness variation and the resulting PSF discontinuities across the CCD
boundaries significant challenges in our removal of the systematics. We resolve
this complication by performing PCA CCD-by-CCD, and interpolating the basis
functions using conventional polynomials. We demonstrate that this PSF
correction scheme reduces the residual PSF ellipticity correlation below 10^-7
over the cosmologically interesting scale. From a null test using HST/UDF
galaxy images without input shear, we verify that the amplitude of the galaxy
ellipticity correlation function, after the PSF correction, is consistent with
the shot noise set by the finite number of objects. Therefore, we conclude that
the current optical design and specification for the accuracy in the focal
plane assembly are sufficient to enable the control of the PSF systematics
required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at
http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd
Exploring Large-scale Structure with Billions of Galaxies
We consider cosmological applications of galaxy number density correlations
to be inferred from future deep and wide multi-band optical surveys. We mostly
focus on very large scales as a probe of possible features in the primordial
power spectrum. We find the proposed survey of the Large Synoptic Survey
Telescope may be competitive with future all-sky CMB experiments over a broad
range of scales. On very large scales the inferred power spectrum is robust to
photometric redshift errors, and, given a sufficient number density of
galaxies, to angular variations in dust extinction and photometric calibration
errors. We also consider other applications, such as constraining dark energy
with the two CMB-calibrated standard rulers in the matter power spectrum, and
controlling the effect of photometric redshift errors to facilitate the
interpretation of cosmic shear data. We find that deep photometric surveys over
wide area can provide constraints that are competitive with spectroscopic
surveys in small volumes.Comment: 11 pages, 7 figures, ApJ accepted, references added, expanded
discussion in Sec. 3.
Boolean network model predicts cell cycle sequence of fission yeast
A Boolean network model of the cell-cycle regulatory network of fission yeast
(Schizosaccharomyces Pombe) is constructed solely on the basis of the known
biochemical interaction topology. Simulating the model in the computer,
faithfully reproduces the known sequence of regulatory activity patterns along
the cell cycle of the living cell. Contrary to existing differential equation
models, no parameters enter the model except the structure of the regulatory
circuitry. The dynamical properties of the model indicate that the biological
dynamical sequence is robustly implemented in the regulatory network, with the
biological stationary state G1 corresponding to the dominant attractor in state
space, and with the biological regulatory sequence being a strongly attractive
trajectory. Comparing the fission yeast cell-cycle model to a similar model of
the corresponding network in S. cerevisiae, a remarkable difference in
circuitry, as well as dynamics is observed. While the latter operates in a
strongly damped mode, driven by external excitation, the S. pombe network
represents an auto-excited system with external damping.Comment: 10 pages, 3 figure
- …