2,418 research outputs found

    Quasi-period collapse and GL_n(Z)-scissors congruence in rational polytopes

    Full text link
    Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational polytope has a quasi-period less than the denominator of that polytope. This phenomenon is poorly understood, and all known cases in which it occurs have been proven with ad hoc methods. In this note, we present a conjectural explanation for quasi-period collapse in rational polytopes. We show that this explanation applies to some previous cases appearing in the literature. We also exhibit examples of Ehrhart polynomials of rational polytopes that are not the Ehrhart polynomials of any integral polytope. Our approach depends on the invariance of the Ehrhart quasi-polynomial under the action of affine unimodular transformations. Motivated by the similarity of this idea to the scissors congruence problem, we explore the development of a Dehn-like invariant for rational polytopes in the lattice setting.Comment: 8 pages, 3 figures, to appear in the proceedings of Integer points in polyhedra, June 11 -- June 15, 2006, Snowbird, U

    Vertices of Gelfand-Tsetlin Polytopes

    Full text link
    This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns arising in the representation theory \mathfrak{gl}_n \C and algebraic combinatorics. We present a combinatorial characterization of the vertices and a method to calculate the dimension of the lowest-dimensional face containing a given Gelfand-Tsetlin pattern. As an application, we disprove a conjecture of Berenstein and Kirillov about the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can construct for each n≥5n\geq5 a counterexample, with arbitrarily increasing denominators as nn grows, of a non-integral vertex. This is the first infinite family of non-integral polyhedra for which the Ehrhart counting function is still a polynomial. We also derive a bound on the denominators for the non-integral vertices when nn is fixed.Comment: 14 pages, 3 figures, fixed attribution

    On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect

    Full text link
    We investigate the problem of computing tensor product multiplicities for complex semisimple Lie algebras. Even though computing these numbers is #P-hard in general, we show that if the rank of the Lie algebra is assumed fixed, then there is a polynomial time algorithm, based on counting the lattice points in polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based on the ellipsoid algorithm, to decide when the coefficients are nonzero in polynomial time for arbitrary rank. Our experiments show that the lattice point algorithm is superior in practice to the standard techniques for computing multiplicities when the weights have large entries but small rank. Using an implementation of this algorithm, we provide experimental evidence for conjectured generalizations of the saturation property of Littlewood--Richardson coefficients. One of these conjectures seems to be valid for types B_n, C_n, and D_n.Comment: 21 pages, 6 table

    Lattice-point generating functions for free sums of convex sets

    Full text link
    Let \J and \K be convex sets in Rn\R^{n} whose affine spans intersect at a single rational point in \J \cap \K, and let \J \oplus \K = \conv(\J \cup \K). We give formulas for the generating function {equation*} \sigma_{\cone(\J \oplus \K)}(z_1,..., z_n, z_{n+1}) = \sum_{(m_1,..., m_n) \in t(\J \oplus \K) \cap \Z^{n}} z_1^{m_1}... z_n^{m_n} z_{n+1}^{t} {equation*} of lattice points in all integer dilates of \J \oplus \K in terms of \sigma_{\cone \J} and \sigma_{\cone \K}, under various conditions on \J and \K. This work is motivated by (and recovers) a product formula of B.\ Braun for the Ehrhart series of \P \oplus \Q in the case where ¶\P and \Q are lattice polytopes containing the origin, one of which is reflexive. In particular, we find necessary and sufficient conditions for Braun's formula and its multivariate analogue.Comment: 17 pages, 2 figures, to appear in Journal of Combinatorial Theory Series

    Enumerating Segmented Patterns in Compositions and Encoding by Restricted Permutations

    Full text link
    A composition of a nonnegative integer (n) is a sequence of positive integers whose sum is (n). A composition is palindromic if it is unchanged when its terms are read in reverse order. We provide a generating function for the number of occurrences of arbitrary segmented partially ordered patterns among compositions of (n) with a prescribed number of parts. These patterns generalize the notions of rises, drops, and levels studied in the literature. We also obtain results enumerating parts with given sizes and locations among compositions and palindromic compositions with a given number of parts. Our results are motivated by "encoding by restricted permutations," a relatively undeveloped method that provides a language for describing many combinatorial objects. We conclude with some examples demonstrating bijections between restricted permutations and other objects.Comment: 12 pages, 1 figur

    Periods of Ehrhart Coefficients of Rational Polytopes

    Get PDF
    Let P⊂R^n be a polytope whose vertices have rational coordinates. By a seminal result of E. Ehrhart, the number of integer lattice points in the kth dilate of P (k a positive integer) is a quasi-polynomial function of k — that is, a "polynomial" in which the coefficients are themselves periodic functions of k. It is an open problem to determine which quasi-polynomials are the Ehrhart quasi-polynomials of rational polytopes. As partial progress on this problem, we construct families of polytopes in which the periods of the coefficient functions take on various prescribed values
    • …
    corecore