4 research outputs found
Healthcare-associated infections in children in Ukraine during 2009β2021
Background. Healthcare-associated infections (HCAIs) now include the development of infectious processes in various organ systems of patients and at hospitals of different work directions. It is believed that HCAIs are infections that first occur 48 hours or later after hospitalization or 30 days after receiving medical care. The aim of our research was a retrospective analysis of the incidence of HCAIs among children in Ukraine during 2009β2021. Materials and methods. Statistical analysis of the prevalence of registered cases of HCAIs in Ukraine for 2009β2021, according to the Center for Public Health of the Ministry of Health of Ukraine. Results. On average, 966 Β± 489 cases of HCAIs were registered annually in Ukraine among children of various ages. According to the age distribution, the number of annual cases of HCAIs among newborns of up to 1 month of age averaged 65.8 %, for those aged 1 month to 1 year β 5.9 %, from 1 to 17 years β 28.3 %. According to the nosological structure of HCAIs, infections of certain conditions occurring in the perinatal period prevailed among children. On average, the number of such diseases for 2010β2021 was 49.5 Β± 7.5 % (among children 0β17 years old) and 13.8 % of the total cases of HCAIs in Ukraine. Conclusions. In recent years, there has been an underestimation of HCAI cases in Ukraine among adult patients and children. Nevertheless, indicators provided by institutions of some regions (Odesa and Kyiv regions) make it possible, with a certain degree of probability, to get an idea of the structure of HCAI incidence in the country. According to the age structure, HCAIs in children (0β17 years) for 2009β2021 accounted for 22.06 % of the total number of HCAIs. Most cases during the specified period were recorded among newborns, 65.8 % of all children with HCAIs. Therefore, the primary efforts should be aimed at reducing HCAIs among newborns
Studies of hemolytical and antimicrobical action of Amanita virosa Secr. and Mycena pura /Fr./ Kumm. poisonous mushrooms lectins
Aim. To study hemolytical and antimicrobical action of two new lectins, obtained from fruit bodies of poisonous basidial mushrooms of A. virosa Secr. and M. pura /Fr./ Kumm. Methods. Research on hemolytical action of lectins was conducted on the erythrocytes of human and animals. The experiments on osmotic protection of erythrocytes were performed in the presence of polyethylenglycols of different molecular mass (in a range from 400 to 4000 Da). Antimicrobical activity of lectins was studied by determination of area delay of growth of culture of different types of microorganisms on the Petri dish in an agaric media. Results. Both lectins hemolyse the erythrocytes of rabbit, human, rat and dog and do not hemolyse the erythrocytes of cow and ship in concentration of 1 mg/ml. The rabbit erythrocytes are most sensitive to hemolytical action of lectins, while hemolytic ability of A. virosa lectin is higher. Hemolysis was not observed in the presence of PEG of molecular mass over 1,350 Da. Action of lectins on 10 types of microorganisms was investigated. Lectins inhibited mainly growth of grammpositive microorganisms and protey. For most tested microorganisms antimicrobial action of Mycena lectin is stronger comparing with A. virosa lectin. Conclusions. Two new hemolytical lectins are found in the fruit bodies of mushrooms-basidiomycetes. The lectin formed ion-permeable pores in membrane of erythrocytes with the hydrodynamic diameter smaller than 2.3 nm and larger than 1.6 nm. These lectins displays also antimicrobial activity and by the sum of these features are similar to the cytolytic lectins of lower invertebrates.ΠΠ΅ΡΠ°. ΠΠΎΡΠ»ΡΠ΄ΠΈΡΠΈ Π³Π΅ΠΌΠΎΠ»ΡΡΠΈΡΠ½Ρ ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π΄ΡΡ Π΄Π²ΠΎΡ
Π½ΠΎΠ²ΠΈΡ
Π»Π΅ΠΊΡΠΈΠ½ΡΠ², ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
Π· ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡ
ΡΡΠ» ΠΎΡΡΡΠΉΠ½ΠΈΡ
Π³ΡΠΈΠ±ΡΠ²-Π±Π°Π·ΠΈΠ΄ΡΠΎΠΌΡΡΠ΅ΡΡΠ² A. virosa Secr. ΡΠ° M. pura /Fr./ Kumm. ΠΠ΅ΡΠΎΠ΄ΠΈ. ΠΠ΅ΠΌΠΎΠ»ΡΡΠΈΡΠ½Ρ Π΄ΡΡ Π»Π΅ΠΊΡΠΈΠ½ΡΠ² Π²ΠΈΠ²ΡΠ°Π»ΠΈ Π½Π° Π΅ΡΠΈΡΡΠΎΡΠΈΡΠ°Ρ
Π»ΡΠ΄ΠΈΠ½ΠΈ Ρ ΡΠ²Π°ΡΠΈΠ½. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΈ Π· ΠΎΡΠΌΠΎΡΠΈΡΠ½ΠΎΠ³ΠΎ Π·Π°Ρ
ΠΈΡΡΡ Π΅ΡΠΈΡΡΠΎΡΠΈΡΡΠ² Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Π·Π° ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΠ΅ΡΠΈΠ»Π΅Π½Π³Π»ΡΠΊΠΎΠ»Ρ ΡΡΠ·Π½ΠΎΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΡ ΠΌΠ°ΡΠΈ (Π² Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½Ρ Π²ΡΠ΄ 400 Π΄ΠΎ 4000 ΠΠ°). ΠΠ½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π»Π΅ΠΊΡΠΈΠ½ΡΠ² Π°Π½Π°Π»ΡΠ·ΡΠ²Π°Π»ΠΈ, Π²ΠΈΠ·Π½Π°ΡΠ°ΡΡΠΈ Π·ΠΎΠ½Ρ Π·Π°ΡΡΠΈΠΌΠΊΠΈ ΡΠΎΡΡΡ ΠΊΡΠ»ΡΡΡΡΠΈ ΡΡΠ·Π½ΠΈΡ
Π²ΠΈΠ΄ΡΠ² ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ² Π½Π° ΡΠ°ΡΠΊΠ°Ρ
ΠΠ΅ΡΡΡ Π² Π°Π³Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ. ΠΠ±ΠΈΠ΄Π²Π° Π»Π΅ΠΊΡΠΈΠ½ΠΈ Π³Π΅ΠΌΠΎΠ»ΡΠ·ΡΡΡΡ Π΅ΡΠΈΡΡΠΎΡΠΈΡΠΈ ΠΊΡΠΎΠ»Ρ, Π»ΡΠ΄ΠΈΠ½ΠΈ, ΡΡΡΠ° ΡΠ° ΡΠΎΠ±Π°ΠΊΠΈ Ρ Π½Π΅ Π³Π΅ΠΌΠΎΠ»ΡΠ·ΡΡΡΡ Π΅ΡΠΈΡΡΠΎΡΠΈΡΠΈ ΠΊΠΎΡΠΎΠ²ΠΈ ΠΉ Π±Π°ΡΠ°Π½Π° Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΡΡ 1 ΠΌΠ³/ΠΌΠ». ΠΠ°ΠΉΡΡΡΠ»ΠΈΠ²ΡΡΠΈΠΌΠΈ Π΄ΠΎ Π³Π΅ΠΌΠΎΠ»ΡΡΠΈΡΠ½ΠΎΡ Π΄ΡΡ Π»Π΅ΠΊΡΠΈΠ½ΡΠ² Π²ΠΈΡΠ²ΠΈΠ»ΠΈΡΡ Π΅ΡΠΈΡΡΠΎΡΠΈΡΠΈ ΠΊΡΠΎΠ»Ρ, Π³Π΅ΠΌΠΎΠ»ΡΠ·ΡΡΡΠ° Π·Π΄Π°ΡΠ½ΡΡΡΡ Π»Π΅ΠΊΡΠΈΠ½Ρ A. virosa Ρ Π²ΠΈΡΠΎΡ. ΠΠ΅ΠΌΠΎΠ»ΡΠ·Ρ Π½Π΅ ΡΠΏΠΎΡΡΠ΅ΡΡΠ³Π°Π»ΠΎΡΡ Π·Π° ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΠ΅ΡΠΈΠ»Π΅Π½Π³Π»ΡΠΊΠΎΠ»Ρ Π· ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΡ ΠΌΠ°ΡΠΎΡ ΠΏΠΎΠ½Π°Π΄ 1350 ΠΠ°. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ Π΄ΡΡ Π»Π΅ΠΊΡΠΈΠ½ΡΠ² Π½Π° 10 Π²ΠΈΠ΄Π°Ρ
ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ². ΠΠ΅ΠΊΡΠΈΠ½ΠΈ ΠΏΡΠΈΠ³Π½ΡΡΡΡΡΡ ΡΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΎ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ² Ρ ΠΏΡΠΎΡΠ΅Ρ. ΠΠ»Ρ Π±ΡΠ»ΡΡΠΎΡΡΡ Π²ΠΈΠΏΡΠΎΠ±ΡΠ²Π°Π½ΠΈΡ
ΠΌΡΠΊΡΠΎΠΎΡΠ³Π°Π½ΡΠ·ΠΌΡΠ² Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Π° Π΄ΡΡ Π»Π΅ΠΊΡΠΈΠ½Ρ M. pura Ρ ΡΠΈΠ»ΡΠ½ΡΡΠΎΡ, Π½ΡΠΆ Π»Π΅ΠΊΡΠΈΠ½Ρ A. virosa Secr. ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΠ½Π°ΠΉΠ΄Π΅Π½ΠΎ Π΄Π²Π° Π½ΠΎΠ²ΠΈΡ
Π³Π΅ΠΌΠΎΠ»ΡΡΠΈΡΠ½ΠΈΡ
Π»Π΅ΠΊΡΠΈΠ½ΠΈ Π² ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡ
ΡΡΠ»Π°Ρ
Π³ΡΠΈΠ±ΡΠ²-Π±Π°Π·ΠΈΠ΄ΡΠΎΠΌΡΡΠ΅ΡΡΠ². ΠΠΎΠ½ΠΈ ΡΠΎΡΠΌΡΡΡΡ Ρ ΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π°Ρ
Π΅ΡΠΈΡΡΠΎΡΠΈΡΡΠ² ΡΠΎΠ½ΠΎ-ΠΏΡΠΎΠ½ΠΈΠΊΠ½Ρ ΠΏΠΎΡΠΈ, Π³ΡΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΈΠΉ Π΄ΡΠ°ΠΌΠ΅ΡΡ ΡΠΊΠΈΡ
Ρ ΠΌΠ΅Π½ΡΠΈΠΌ Π·Π° 2,3 Π½ΠΌ, Π°Π»Π΅ Π±ΡΠ»ΡΡΠΈΠΌ Π·Π° 1,6 Π½ΠΌ. ΠΠ°Π·Π½Π°ΡΠ΅Π½Ρ Π»Π΅ΠΊΡΠΈΠ½ΠΈ Π²ΠΈΡΠ²Π»ΡΡΡΡ ΡΠ°ΠΊΠΎΠΆ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Ρ Π·Π° ΡΡΠΊΡΠΏΠ½ΡΡΡΡ ΡΠΈΡ
ΠΎΠ·Π½Π°ΠΊ Π½Π°Π³Π°Π΄ΡΡΡΡ ΡΠΈΡΠΎΠ»ΡΡΠΈΡΠ½Ρ Π»Π΅ΠΊΡΠΈΠ½ΠΈ Π½ΠΈΠΆΡΠΈΡ
Π±Π΅Π·Ρ
ΡΠ΅Π±Π΅ΡΠ½ΠΈΡ
.Π¦Π΅Π»Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π³Π΅ΠΌΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π΄Π²ΡΡ
Π½ΠΎΠ²ΡΡ
Π»Π΅ΠΊΡΠΈΠ½ΠΎΠ², Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΈΠ· ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΡΡ
ΡΠ΅Π» ΡΠ΄ΠΎΠ²ΠΈΡΡΡ
Π³ΡΠΈΠ±ΠΎΠ²-Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΌΠΈΡΠ΅ΡΠΎΠ² A. virosa Secr. ΠΈ M. pura /Fr./ Kumm. ΠΠ΅ΡΠΎΠ΄Ρ.ΠΠ΅ΠΌΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π»Π΅ΠΊΡΠΈΠ½ΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π½Π° ΡΡΠΈΡΡΠΎΡΠΈΡΠ°Ρ
ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ ΠΏΠΎ ΠΎΡΠΌΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°ΡΠΈΡΠ΅ ΡΡΠΈΡΡΠΎΡΠΈΡΠΎΠ² Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»Π΅ΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 400β4000 ΠΠ°). ΠΠ½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π΅ΠΊΡΠΈΠ½ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡ Π·ΠΎΠ½Ρ Π·Π°Π΄Π΅ΡΠΆΠΊΠΈ ΡΠΎΡΡΠ° ΠΊΡΠ»ΡΡΡΡΡ ΡΠ°Π·Π½ΡΡ
Π²ΠΈΠ΄ΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π° ΡΠ°ΡΠΊΠ°Ρ
ΠΠ΅ΡΡΠΈ Π² Π°Π³Π°ΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠ΅Π΄Π΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ±Π° Π»Π΅ΠΊΡΠΈΠ½Π° Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡΡΡΡ ΡΡΠΈΡΡΠΎΡΠΈΡΡ ΠΊΡΠΎΠ»ΠΈΠΊΠ°, ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΊΡΡΡΡ ΠΈ ΡΠΎΠ±Π°ΠΊΠΈ ΠΈ Π½Π΅ Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡΡΡΡ ΡΡΠΈΡΡΠΎΡΠΈΡΡ ΠΊΠΎΡΠΎΠ²Ρ ΠΈ Π±Π°ΡΠ°Π½Π° Π² ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 1 ΠΌΠ³/ΠΌΠ». ΠΡΠΈΡΡΠΎΡΠΈΡΡ ΠΊΡΠΎΠ»ΠΈΠΊΠ° ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ ΡΠ°ΠΌΡΠΌΠΈ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΊ Π³Π΅ΠΌΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π»Π΅ΠΊΡΠΈΠ½ΠΎΠ², ΠΏΡΠΈ ΡΡΠΎΠΌ Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡΡΡΡΠ°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π»Π΅ΠΊΡΠΈΠ½Π° A. virosa Π²ΡΡΠ΅. Π ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»Ρ Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΎΠΉ Π²ΡΡΠ΅ 1350 ΠΠ° Π³Π΅ΠΌΠΎΠ»ΠΈΠ· Π½Π΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΡΡ. ΠΠ·ΡΡΠ΅Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π»Π΅ΠΊΡΠΈΠ½ΠΎΠ² Π½Π° 10 Π²ΠΈΠ΄ΠΎΠ² ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠΠ΅ΠΊΡΠΈΠ½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡ ΡΠΎΡΡ Π³ΡΠ°ΠΌΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΠΏΡΠΎΡΠ΅Ρ. ΠΠ»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½Π°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π΅ΠΊΡΠΈΠ½Π° ΠΌΠΈΡΠ΅Π½Ρ Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π»Π΅ΠΊΡΠΈΠ½Π° A. virosa. ΠΡΠ²ΠΎΠ΄Ρ. ΠΠ°ΠΉΠ΄Π΅Π½Ρ Π΄Π²Π° Π½ΠΎΠ²ΡΡ
Π³Π΅ΠΌΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π»Π΅ΠΊΡΠΈΠ½Π° Π² ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΡΡ
ΡΠ΅Π»Π°Ρ
Π³ΡΠΈΠ±ΠΎΠ²-Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΌΠΈΡΠ΅ΡΠΎΠ². ΠΠ½ΠΈ ΡΠΎΡΠΌΠΈΡΡΡΡ ΠΈΠΎΠ½ΠΎ-ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠΈΠ΅ ΠΏΠΎΡΡ, Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΌΠ΅ΡΡ ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠ΅Π½ΡΡΠ΅ 2,3 Π½ΠΌ, Π½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ 1,6 Π½ΠΌ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π»Π΅ΠΊΡΠΈΠ½Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°ΡΡ ΡΠ°ΠΊΠΆΠ΅ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΠΏΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ ΡΡΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ ΡΠΈΡΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»Π΅ΠΊΡΠΈΠ½Ρ Π½ΠΈΠ·ΡΠΈΡ
Π±Π΅ΡΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΡΡ
Investigation of the compressed baryonic matter at the GSI accelerator complex*
The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (βsNN = 2-4.9 GeV) is to discover fundamental properties of QCD matter, namely, the equation-of-state at high density as it is expected to occur in the core of neutron stars, effects of chiral symmetry, and the phase structure at large baryon-chemical potentials (ΞΌB β₯ 500 MeV).
We are focusing here on the contribution of JINR to the CBM experiment: design of the superconducting dipole magnet; manufacture of the straw and micro-strip silicon detectors, participation in the data taking and analysis algorithms and physics program
Investigation of the compressed baryonic matter at the GSI accelerator complex
The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (βsNN = 2-4.9 GeV) is to discover fundamental properties of QCD matter, namely, the equation-of-state at high density as it is expected to occur in the core of neutron stars, effects of chiral symmetry, and the phase structure at large baryon-chemical potentials (ΞΌB β₯ 500 MeV).We are focusing here on the contribution of JINR to the CBM experiment: design of the superconducting dipole magnet; manufacture of the straw and micro-strip silicon detectors, participation in the data taking and analysis algorithms and physics program.* Dedicated to the memory of Prof. Yu.V. Zanevsky and Prof. V.D. Peshekhono