8 research outputs found

    Investigation of Solvent Hydron Exchange in the Reaction Catalyzed by the Antibiotic Resistance Protein Cfr

    No full text
    Cfr is a radical <i>S</i>-adenosylmethionine (RS) methylase that appends methyl groups to C8 and C2 of adenosine 2503 in 23S rRNA. Methylation of C8 confers resistance to several classes of antibiotics that bind in or near the peptidyltransferase center of the bacterial ribosome, including the synthetic antibiotic linezolid. The Cfr reaction requires the action of five conserved cysteines, three of which ligate a required [4Fe-4S] cluster cofactor. The two remaining cysteines play a more intricate role in the reaction; one (Cys338) becomes transiently methylated during catalysis. The function of the second (Cys105) has not been rigorously established; however, in the related RlmN reaction, it (Cys118) initiates resolution of a key protein–nucleic acid cross-linked intermediate by abstracting the proton from the carbon center (C2) undergoing methylation. We previously proposed that, unlike RlmN, Cfr would utilize a polyprotic base during resolution of the protein–nucleic acid cross-linked intermediate during C8 methylation and, like RlmN, use a monoprotic base during C2 methylation. We based this proposal on the fact that solvent hydrons could exchange into the product during C8 methylation, but not during C2 methylation. Herein, we show that Cys105 of Cfr has a function similar to that of Cys118 of RlmN while methylating C8 of A2503 and provide evidence for one molecule of water that is in close contact with it, which provides the exchangeable protons during catalysis

    Electrochemical Resolution of the [4Fe-4S] Centers of the AdoMet Radical Enzyme BtrN: Evidence of Proton Coupling and an Unusual, Low-Potential Auxiliary Cluster

    No full text
    The <i>S</i>-adenosylmethionine (AdoMet) radical superfamily of enzymes includes over 113 500 unique members, each of which contains one indispensable iron–sulfur (FeS) cluster that is required to generate a 5′-deoxyadenosyl 5′-radical intermediate during catalysis. Enzymes within several subgroups of the superfamily, however, have been found to contain one or more additional FeS clusters. While these additional clusters are absolutely essential for enzyme activity, their exact roles in the function and/or mechanism of action of many of the enzymes are at best speculative, indicating a need to develop methods to characterize and study these clusters in more detail. Here, BtrN, an AdoMet radical dehydrogenase that catalyzes the two-electron oxidation of 2-deoxy-<i>scyllo</i>-inosamine to amino-dideoxy-<i>scyllo</i>-inosose, an intermediate in the biosynthesis of 2-deoxystreptamine antibiotics, is examined through direct electrochemistry, where the potential of both its AdoMet radical and auxiliary [4Fe-4S] clusters can be measured simultaneously. We find that the AdoMet radical cluster exhibits a midpoint potential of −510 mV, while the auxiliary cluster exhibits a midpoint potential of −765 mV, to our knowledge the lowest [4Fe-4S]<sup>2+/+</sup> potential to be determined to date. The impact of AdoMet binding and the pH dependence of catalysis are also quantitatively observed. These data show that direct electrochemical methods can be used to further elucidate the chemistry of the burgeoning AdoMet radical superfamily in the future

    NosN, a Radical <i>S</i>‑Adenosylmethionine Methylase, Catalyzes Both C1 Transfer and Formation of the Ester Linkage of the Side-Ring System during the Biosynthesis of Nosiheptide

    No full text
    Nosiheptide, a member of the <i>e</i> series of macrocyclic thiopeptide natural products, contains a side-ring system composed of a 3,4-dimethylindolic acid (DMIA) moiety connected to Glu6 and Cys8 of the thiopeptide backbone via ester and thioester linkages, respectively. Herein, we show that NosN, a predicted class C radical <i>S</i>-adenosylmethionine (SAM) methylase, catalyzes both the transfer of a C1 unit from SAM to 3-methylindolic acid linked to Cys8 of a synthetic substrate surrogate as well as the formation of the ester linkage between Glu6 and the nascent C4 methylene moiety of DMIA. In contrast to previous studies that indicated that 5′-methylthioadenosine is the immediate methyl donor in the reaction, in our studies, SAM itself plays this role, giving rise to <i>S</i>-adenosylhomocysteine as a coproduct of the reaction

    Rerouting the Pathway for the Biosynthesis of the Side Ring System of Nosiheptide: The Roles of NosI, NosJ, and NosK

    No full text
    Nosiheptide (NOS) is a highly modified thiopeptide antibiotic that displays formidable in vitro activity against a variety of Gram-positive bacteria. In addition to a central hydroxypyridine ring, NOS contains several other modifications, including multiple thiazole rings, dehydro-amino acids, and a 3,4-dimethylindolic acid (DMIA) moiety. The DMIA moiety is required for NOS efficacy and is synthesized from l-tryptophan in a series of reactions that have not been fully elucidated. Herein, we describe the role of NosJ, the product of an unannotated gene in the biosynthetic operon for NOS, as an acyl carrier protein that delivers 3-methylindolic acid (MIA) to NosK. We also reassign the role of NosI as the enzyme responsible for catalyzing the ATP-dependent activation of MIA and MIA’s attachment to the phosphopantetheine moiety of NosJ. Lastly, NosK catalyzes the transfer of the MIA group from NosJ-MIA to a conserved serine residue (Ser102) on NosK. The X-ray crystal structure of NosK, solved to 2.3 Å resolution, reveals that the protein is an α/β-fold hydrolase. Ser102 interacts with Glu210 and His234 to form a catalytic triad located at the bottom of an open cleft that is large enough to accommodate the thiopeptide framework

    Spectroscopic Investigations of Catalase Compound II: Characterization of an Iron(IV) Hydroxide Intermediate in a Non-thiolate-Ligated Heme Enzyme

    No full text
    We report on the protonation state of <i>Helicobacter pylori</i> catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron­(IV) hydroxide state up to pH 11. Above this pH, the iron­(IV) hydroxide complex transitions to a new species (p<i>K</i><sub>a</sub> = 13.1) with Mössbauer parameters that are indicative of an iron­(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II p<i>K</i><sub>a</sub> in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules

    Structure of Quinolinate Synthase from <i>Pyrococcus horikoshii</i> in the Presence of Its Product, Quinolinic Acid

    No full text
    Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD<sup>+</sup>) and its derivatives in all organisms that synthesize the molecule <i>de novo</i>. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fe<sub>a</sub>), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fe<sub>a</sub> in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fe<sub>a</sub> and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity

    Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    No full text
    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical <i>S</i>-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, <sup>13</sup>C hyperfine interactions between the radical and the methylene carbon of the formerly [<i>methyl</i>-<sup>13</sup>C]­Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process

    Integrative Molecular Structure Elucidation and Construction of an Extended Metabolic Pathway Associated with an Ancient Innate Immune Response in COVID-19 Patients

    No full text
    We present compelling evidence for the existence of an extended innate viperin-dependent pathway, which provides crucial evidence for an adaptive response to viral agents, such as SARS-CoV-2. We show the in vivo biosynthesis of a family of novel endogenous cytosine metabolites with potential antiviral activities. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed a characteristic spin-system motif, indicating the presence of an extended panel of urinary metabolites during the acute viral replication phase. Mass spectrometry additionally enabled the characterization and quantification of the most abundant serum metabolites, showing the potential diagnostic value of the compounds for viral infections. In total, we unveiled ten nucleoside (cytosine- and uracil-based) analogue structures, eight of which were previously unknown in humans allowing us to propose a new extended viperin pathway for the innate production of antiviral compounds. The molecular structures of the nucleoside analogues and their correlation with an array of serum cytokines, including IFN-α2, IFN-γ, and IL-10, suggest an association with the viperin enzyme contributing to an ancient endogenous innate immune defense mechanism against viral infection
    corecore