6 research outputs found

    Electrically tunable detector of THz-frequency signals based on an antiferromagnet

    Full text link
    A concept of an electrically tunable resonance detector of THz-frequency signals based on antiferromagnetic/heavy metal (AFM/HM) hetero-structure is proposed. The conversion of a THz-frequency input signal into DC voltage is done using the inverse spin Hall effect in an (AFM/HM) bilayer. An additional bias DC current in the HM layer can be used to vary the effective anisotropy of the AFM, and, therefore, to tune the AFMR frequency. The proposed AFM/HM hetero-structure works as a resonance-type quadratic detector which can be tuned by the bias current in the range of at least 10 percent of the AFMR frequency and our estimations show that the sensitivity of this detector could be comparable to that of modern detectors based on the Schottky, Gunn or graphene-based diodes

    Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper)

    Get PDF
    Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design, and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing different natural advantages of complementary quantum systems and for engineering new functionalities. This review article focuses on the current frontiers with respect to utilizing magnons for novel quantum functionalities. Magnons are the fundamental excitations of magnetically ordered solid-state materials and provide great tunability and flexibility for interacting with various quantum modules for integration in diverse quantum systems. The concomitant-rich variety of physics and material selection enable exploration of novel quantum phenomena in materials science and engineering. In addition, the ease of generating strong coupling with other excitations makes hybrid magnonics a unique platform for quantum engineering. We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons. Subsequently, we focus on the recent progress of magnon–magnon coupling within confined magnetic systems. Next, we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects. Lastly, we focus on the spin excitations and magnon spectra of novel quantum materials investigated with advanced optical characterization

    Theory of Antiferromagnet-Based Detector of Terahertz Frequency Signals

    No full text
    We present a theory of a detector of terahertz-frequency signals based on an antiferromagnetic (AFM) crystal. The conversion of a THz-frequency electromagnetic signal into the DC voltage is realized using the inverse spin Hall effect in an antiferromagnet/heavy metal bilayer. An additional bias DC magnetic field can be used to tune the antiferromagnetic resonance frequency. We show that if a uniaxial AFM is used, the detection of linearly polarized signals is possible only for a non-zero DC magnetic field, while circularly polarized signals can be detected in a zero DC magnetic field. In contrast, a detector based on a biaxial AFM can be used without a bias DC magnetic field for the rectification of both linearly and circularly polarized signals. The sensitivity of a proposed AFM detector can be increased by increasing the magnitude of the bias magnetic field, or by by decreasing the thickness of the AFM layer. We believe that the presented results will be useful for the practical development of tunable, sensitive and portable spintronic detectors of THz-frequency signals based of the antiferromagnetic resonance (AFMR)
    corecore