52 research outputs found

    Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers

    Get PDF
    Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.Cambridge Commonwealth Trust, European Research Council under the European Unionā€™s Seventh Framework Programme (FP7/2007ā€“2013)/ERC grant agreement No. [279337/DOS], AstraZeneca, European Union, Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, Wellcome Trus

    Validation of methods for converting the original Disease Activity Score (DAS) to the DAS28

    Get PDF
    Ā© The Author(s) 2018.The Disease Activity Score (DAS) is integral in tailoring the clinical management of rheumatoid arthritis (RA) patients and is an important measure in clinical research. Different versions have been developed over the years to improve reliability and ease of use. Combining the original DAS and the newer DAS28 data in both contemporary and historical studies is important for both primary and secondary data analyses. As such, a methodologically robust means of converting the old DAS to the new DAS28 measure would be invaluable. Using data from The Early RA Study (ERAS), a sub-sample of patients with both DAS and DAS28 data were used to develop new regression imputation formulas using the total DAS score (univariate), and using the separate components of the DAS score (multivariate). DAS were transformed to DAS28 using an existing formula quoted in the literature, and the newly developed formulas. Bland and Altman plots were used to compare the transformed DAS with the recorded DAS28 to ascertain levels of agreement. The current transformation formula tended to overestimate the true DAS28 score, particularly at the higher end of the scale. A formula which uses all separate components of the DAS was found to estimate the scores with a higher level of precision. A new formula is proposed that can be used by other early RA cohorts to convert the original DAS to DAS28.Peer reviewedFinal Published versio

    Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    Get PDF
    While exploring the effects of aerosol IFN-Ī³ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-Ī³-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-Ī³ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro . Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-Ī³ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages

    Roles of Innovation in Education Delivery

    Get PDF
    This paper reviews trends in higher education, characterizing both the current learning environments in pharmacy education as well as a vision for future learning environments, and outlines a strategy for successful implementation of innovations in educational delivery. The following 3 areas of focus are addressed: (1) rejecting the use of the majority of classroom time for the simple transmission of factual information to students; (2) challenging students to think critically, communicate lucidly, and synthesize broadly in order to solve problems; and (3) adopting a philosophy of ā€œevidence-based educationā€ as a core construct of instructional innovation and reform
    • ā€¦
    corecore