338 research outputs found

    Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves

    Full text link
    Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff C. Smith et a

    Initial Characteristics of Kepler Short Cadence Data

    Full text link
    The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres

    TESS Data Release Notes: Sector 18 DR25

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 18 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data

    Get PDF
    The Kepler planet sample can only be used to reconstruct the underlying planet occurrence rate if the detection efficiency of the Kepler pipeline is known, here we present the results of a second experiment aimed at characterising this detection efficiency. We inject simulated transiting planet signals into the pixel data of ~10,000 targets, spanning one year of observations, and process the pixels as normal. We compare the set of detections made by the pipeline with the expectation from the set of simulated planets, and construct a sensitivity curve of signal recovery as a function of the signal-to-noise of the simulated transit signal train. The sensitivity curve does not meet the hypothetical maximum detection efficiency, however it is not as pessimistic as some of the published estimates of the detection efficiency. For the FGK stars in our sample, the sensitivity curve is well fit by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find that the pipeline algorithms recover the depths and periods of the injected signals with very high fidelity, especially for periods longer than 10 days. We perform a simplified occurrence rate calculation using the measured detection efficiency compared to previous assumptions of the detection efficiency found in the literature to demonstrate the systematic error introduced into the resulting occurrence rates. The discrepancies in the calculated occurrence rates may go some way towards reconciling some of the inconsistencies found in the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap

    TESS Data Release Notes: Sector 17, DR24

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 17 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    The K2 Mission: Characterization and Early results

    Full text link
    The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75-days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.Comment: 25 pages, 11 figures, Accepted to PAS

    TESS Data Release Notes: Sector 20, DR27

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 20 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    TESS Data Release Notes: Sector 9 DR11

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 9 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    TESS Data Release Notes: Sector 16, DR22

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 16 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
    • …
    corecore