13 research outputs found

    Experimental investigation of the performance of a supersonic compressor cascade

    Get PDF
    Results are presented from an experimental investigation of a linear, supersonic, compressor cascade tested in the supersonic cascade wind tunnel facility at the DFVLR in Cologne, Federal Republic of Germany. The cascade design was derived from the near-tip section of a high-through-flow axial flow compressor rotor with a design relative inlet Mach number of 1.61. Test data were obtained over a range of inlet Mach numbers from 1.23 to 1.71, and a range of static pressure ratios and axial-velocity-density ratios (AVDR) at the design inlet condition. Flow velocity measurements showing the wave pattern in the cascade entrance region were obtained using a laser transit anemometer. From these measurements, some unique-incidence conditions were determined, thus relating the supersonic inlet Mach number to the inlet flow direction. The influence of static pressure ratio and AVDR on the blade passage flow and the blade-element performance is described, and an empirical correlation is used to show the influence of these two (independent) parameters on the exit flow angle and total-pressure loss for the design inlet condition

    Averaging techniques for steady and unsteady calculations of a transonic fan stage

    Get PDF
    It is often desirable to characterize a turbomachinery flow field with a few lumped parameters such as total pressure ratio or stage efficiency. Various averaging schemes may be used to compute these parameters. The momentum, energy, and area averaging schemes are described and compared. The schemes were compared for two computed solutions of the midspan section of a transonic fan stage: a steady averaging-plane solution in which average rotor outflow conditions were used as stator inflow conditions, and an unsteady rotor-stator interaction solution. The solutions were computed on identical grids using similar Navier-Stokes codes and an algebraic turbulence model. The unsteady solution is described, some unsteady flow phenomena are discussed, and the steady pressure distributions are compared. Despite large unsteady pressure fluctuations on the stator surface, the steady pressure distribution matched the average unsteady distribution almost exactly. Stator wake profiles, stator loss coefficient, and stage efficiency were computed for the two solutions with the three averaging schemes and are compared. In general, the energy averaging scheme gave good agreement between the averaging-plane solution and the time-averaged unsteady solution, even though certain phenomena due to unsteady wake migration were neglected

    Low-Diffusion Flux-Splitting Methods for Flows at All Speeds

    No full text
    corecore