19 research outputs found

    Study of the earthquake source process and seismic hazards

    No full text
    To obtain the rupture history of the Parkfield, California, earthquake, we perform 12 kinematic inversions using elliptical sub-faults. The preferred model has a seismic moment of 1.21 x 10^18 Nm, distributed on two distinct ellipses. The average rupture speed is ~2.7 km/s. The good spatial agreement with previous large earthquakes and aftershocks in the region, suggests the presence of permanent asperities that break during large earthquakes. We investigate our inversion method with several tests. We demonstrate its capability to retrieve the rupture process. We show that the convergence of the inversion is controlled by the space-time location of the rupture front. Additional inversions show that our procedure is not highly influenced by high-frequency signal, while we observe high sensitivity to the waveforms duration. After considering kinematic inversion, we present a full dynamic inversion for the Parkfield earthquake using elliptical sub-faults. The best fitting model has a seismic moment of 1.18 x 10^18 Nm, distributed on one ellipse. The rupture speed is ~2.8 km/s. Inside the parameter-space, the models are distributed according the rupture speed and final seismic moment, defining a optimal region where models fit correctly the data. Furthermore, to make the preferred kinematic model both dynamically correct while fitting the data, we show it is necessary to connect the two ellipses. This is done by adopting a new approach that uses b-spline curves. Finally, we relocate earthquakes in the vicinity of the Darfield, New-Zealand earthquake. 40 years prior to the earthquake, where there is the possibility of earthquake migration towards its epicentral region. Once it triggers the 2010-2011 earthquake sequence, we observe earthquakes migrating inside regions of stress increase. We also observe a stress increase on a large seismic gap of the Alpine Fault, as well as on some portions of the Canterbury Plains that remain today seismically quiet.</p

    Study of the earthquake source process and seismic hazards

    No full text
    To obtain the rupture history of the Parkfield, California, earthquake, we perform 12 kinematic inversions using elliptical sub-faults. The preferred model has a seismic moment of 1.21 x 10^18 Nm, distributed on two distinct ellipses. The average rupture speed is ~2.7 km/s. The good spatial agreement with previous large earthquakes and aftershocks in the region, suggests the presence of permanent asperities that break during large earthquakes. We investigate our inversion method with several tests. We demonstrate its capability to retrieve the rupture process. We show that the convergence of the inversion is controlled by the space-time location of the rupture front. Additional inversions show that our procedure is not highly influenced by high-frequency signal, while we observe high sensitivity to the waveforms duration. After considering kinematic inversion, we present a full dynamic inversion for the Parkfield earthquake using elliptical sub-faults. The best fitting model has a seismic moment of 1.18 x 10^18 Nm, distributed on one ellipse. The rupture speed is ~2.8 km/s. Inside the parameter-space, the models are distributed according the rupture speed and final seismic moment, defining a optimal region where models fit correctly the data. Furthermore, to make the preferred kinematic model both dynamically correct while fitting the data, we show it is necessary to connect the two ellipses. This is done by adopting a new approach that uses b-spline curves. Finally, we relocate earthquakes in the vicinity of the Darfield, New-Zealand earthquake. 40 years prior to the earthquake, where there is the possibility of earthquake migration towards its epicentral region. Once it triggers the 2010-2011 earthquake sequence, we observe earthquakes migrating inside regions of stress increase. We also observe a stress increase on a large seismic gap of the Alpine Fault, as well as on some portions of the Canterbury Plains that remain today seismically quiet.This thesis is not currently available in OR

    Imaging of Seismogenic Asperities of the 2016 ML 6.0 Amatrice, Central Italy, Earthquake Through Dynamic Rupture Simulations

    No full text
    International audienc

    Exploring the uncertainty range of coseismic stress drop estimations of large earthquakes using finite fault inversions

    No full text
    International audienceA new finite fault inversion strategy is developed to explore the uncertainty range for the energy based average coseismic stress drop of large earthquakes. For a given earthquake, we conduct a modified finite fault inversion to find a solution that not only matches seismic and geodetic data but also has a stress drop matching a specified value. We do the inversions for a wide range of stress drops. These results produce a trade-off curve between the misfit to the observations and stress drop, which allows one to define the range of stress drop that will produce an acceptable misfit. The study of the 2014 Rat Islands Mw 7.9 earthquake reveals an unexpected result: when using only teleseismic waveforms as data, the lower bound of stress drop (5–10 MPa) for this earthquake is successfully constrained. However, the same data set exhibits no sensitivity to its upper bound of stress drop because there is limited resolution to the fine scale roughness of fault slip. Given that the spatial resolution of all seismic or geodetic data is limited, we can speculate that the upper bound of stress drop cannot be constrained with them. This has consequences for the earthquake energy budget. Failing to constrain the upper bound of stress drop leads to the conclusions that (1) the seismic radiation efficiency determined from the inverted model might be significantly overestimated and (2) the upper bound of the average fracture energy Eg cannot be constrained by seismic or geodetic data. Thus, caution must be taken when investigating the characteristics of large earthquakes using the energy budget approach. Finally, searching for the lower bound of stress drop can be used as an energy-based smoothing scheme during finite fault inversions

    Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning

    No full text
    Abstract After large earthquakes, parts of the fault continue to slip for days to months during the afterslip phase, a behaviour documented for many earthquakes. Yet, little is known about the early stage, i.e., from minutes to hours after the mainshock. Its detailed study requires continuous high-rate position time series close to the fault, and advanced signal processing to accurately extract the surface displacements. Here, we use refined kinematic precise point positioning processing to document the early postseismic deformation for three earthquakes along the South American subduction zone (2010 M w 8.8 Maule, Chile; 2015 M w 8.3 Illapel, Chile; 2016 M w 7.6 Pedernales, Ecuador). First, we show that early afterslip generates significant surface displacement as early as a few tens of minutes after the earthquake. Our analysis of the time series indicates that, over the first 36 hours, more than half of the displacement occurs within the first 12 hours, a time window often disregarded with daily positioning. Thus, estimates of coseismic offsets can be biased by more than 10% if early postseismic displacements are acknowledged as coseismic ones. Finally, these results highlight the difficulty to accurately evaluate the different contribution to the seismic cycle budget and thus the associated hazard on faults

    Very early identification of a bimodal frictional behavior during the post-seismic phase of the 2015 Mw 8.3 Illapel, Chile, earthquake

    No full text
    International audienceAbstract. It is well-established that the post-seismic slip results from the combined contribution of seismic and aseismic processes. However, the partitioning between these two modes of deformation remains unclear due to the difficulty of inferring detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 h following the 2015 Mw 8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only a few hours after the mainshock. We finish by showing that this information can potentially be obtained very rapidly after a large earthquake, which could prove to be useful in forecasting the long-term spatial pattern of aftershocks
    corecore