29 research outputs found

    <i>ABCB1</i> (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells

    Get PDF
    BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients

    Enhanced response rate to pegylated liposomal doxorubicin in high grade serous ovarian carcinomas harbouring BRCA1 and BRCA2 aberrations

    Get PDF
    Abstract Background Approximately 10–15% of ovarian carcinomas (OC) are attributed to inherited susceptibility, the majority of which are due to mutations in BRCA1 or BRCA2 (BRCA1/2). These patients display superior clinical outcome, including enhanced sensitivity to platinum-based chemotherapy. Here, we seek to investigate whether BRCA1/2 status influences the response rate to single-agent pegylated liposomal doxorubicin (PLD) in high grade serous (HGS) OC. Methods One hundred and forty-eight patients treated with single-agent PLD were identified retrospectively from the Edinburgh Ovarian Cancer Database. DNA was extracted from formalin-fixed paraffin-embedded (FFPE) archival tumour material and sequenced using the Ion Ampliseq BRCA1 and BRCA2 panel. A minimum variant allele frequency threshold was applied to correct for sequencing artefacts associated with formalin fixation. Results A superior response rate to PLD was observed in patients with HGS OC who harboured variants likely to affect BRCA1 or BRCA2 function compared to the BRCA1/2 wild-type population (36%, 9 of 25 patients versus 12.1%, 7 of 58 patients; p = 0.016). An enhanced response rate was also seen in patients harbouring only the BRCA1 SNP rs1799950, predicted to be detrimental to BRCA1 function (50%, 3 of 6 patients versus 12.1%, 7 of 58 patients; p = 0.044). Conclusions These data demonstrate that HGS OC patients with BRCA1/2 variants predicted damaging to protein function experience superior sensitivity to PLD, consistent with impaired DNA repair. Further characterisation of rs1799950 is now warranted in relation to chemosensitivity and susceptibility to developing ovarian carcinoma

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF

    Multivalent conjugates of poly-?-D-glutamic acid from Bacillus licheniformis with antibody F(ab') and glycopeptide ligands

    No full text
    Poly--D-glutamic acid from Bacillus licheniformis is a water-soluble, nontoxic, nonimmunogenic exopolymer. Using synthetic linkers, the -carboxylate side chains of PGA were conjugated to an exposed thiol side chain of an antibody F(ab') fragment, Mc109F4. Analysis of the PGA-Mc109F4 conjugate by gel filtration HPLC revealed a mixture of multivalent conjugates. The PGA-Mc109F4 conjugate retained biological activity, but showed a lower binding affinity to target BCL3B3 cells than free Mc109F4 F(ab')2 by flow cytometry, and a lower efficacy for BCL3B3 growth inhibition than free Mc109F4 F(ab')2. PGA was also conjugated with the free amino group of glycopeptide antibiotic vancomycin. The PGA-vancomycin conjugate showed slightly lower antibacterial activity than free vancomycin versus susceptible Bacillus subtilis, but slightly higher activity versus intrinsically resistant Leuconostoc mesenteroides

    T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody

    No full text
    In this study we demonstrate that treatment with anti-CD40 mAb eradicates a range of mouse lymphomas (BCL1, A31, A20, and EL4), but only when used against i.v. tumor doses in excess of 107 cells. Only partial protection was seen against smaller tumor loads. We saw no evidence that anti-CD40 mAb changed the phenotype of the lymphomas or inhibited their growth in the initial period following treatment, but it did result in a rapid expansion of cytotoxic CD8+ cells that was able to clear the neoplastic disease and provide long-term protection against tumor rechallenge. The CTL responses were blocked by mAb against a range of coreceptors and cytokines, including CD8, B7-1, B7-2, LFA-1, and IFN-{gamma}, but not CD4 or CTLA-4, indicating the presence of a conventional cellular Th1 response. Furthermore, we found evidence of cross-recognition between lymphomas (BCL1 and A20) as measured by cytotoxicity and IFN-{gamma} responses in vitro and using tumor rechallenge experiments, suggesting common target Ags. Finally, although anti-CD40 was shown to stimulate NK cell killing, we could find no role for these cells in controlling tumor growth. These data underline the ability of anti-CD40 mAb to potentiate CTL responses and the potency of cellular immunity in eradicating large quantities of syngeneic tumor.<br/

    Therapeutic efficacy of FcgammaRI/CD64-directed bispecific antibodies in B-cell lymphoma

    No full text
    CD64 (Fc?RI) receptors represent highly potent trigger molecules for activated polymorphonuclear cells (PMN) and mediate lysis of a range of tumors in the presence of appropriate monoclonal antibodies. An huCD64 transgenic mouse model designed to analyze the therapeutic activity of a panel of bispecific F(ab')2(BsAb) in retargeting granulocyte–colony-stimulating factor (G-CSF)–activated PMN against syngeneic B-cell lymphomas is reported. This model allows careful analysis of the individual elements of the therapeutic process. BsAb were directed against immunoglobulin-idiotype (Id), major histocompatibility class II (MHC II), or CD19 on the tumors and huCD64 on the effectors. In vitro cytotoxicity assays and in vivo tumor tracking showed that, provided effectors were activated with G-CSF, all 3 derivatives destroyed and cleared lymphoma cells, with (huCD64?×?MHC II) proving by far the most cytotoxic in vitro. However, though all derivatives delivered some survival advantage, only the [huCD64?×?Id] BsAb provided long-term protection to tumor-bearing animals. These results demonstrate that CD64-recruited cytotoxic effectors operate in vivo but that the (huCD64?×?Id) conferred an additional anti-tumor function essential for long-term protection. T-cell depletion studies demonstrated that this extra therapeutic activity with [huCD64?×?Id] was totally dependent on CD4 and CD8 T cells and that mice, once “cured” with BsAb, were resistant to tumor rechallenge. These findings indicate that CD64 is an effective trigger molecule for delivering cytokine-activated PMN against tumor in vivo and that, provided tumor targets are selected appropriately, CD64-based BsAb can establish long-term T-cell immunity. <br/

    Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration

    No full text
    Chronic neurodegeneration is a major worldwide health problem, and it has been suggested that systemic inflammation can accelerate the onset and progression of clinical symptoms. A possible explanation is that systemic inflammation “switches” the phenotype of microglia from a relatively benign to a highly aggressive and tissue damaging phenotype. The current study investigated the molecular mechanism underlying this microglia phenotype “switching.” We show in mice with chronic neurodegeneration (ME7 prion model) that there is increased expression of receptors that have a key role in macrophage activation and associated signaling pathways, including TREM-2, Siglec-F, CD200R, and IgG Fc receptors (FcgRs). Systemic inflammation induced by LPS further increased protein levels of the activating FcgRIII and FcgRIV, but not of other microglial receptors, including the inhibitory FcgRII. In addition to these changes in receptor expression, IgG levels in the brain parenchyma were increased during chronic neurodegeneration, and these IgG levels further increased after systemic inflammation. g Chain–deficient mice show modified proinflammatory cytokine expression in the brain after systemic inflammation. We conclude that systemic inflammation during chronic neurodegeneration increases the expression levels of activating FcgR on microglia and thereby lowers the signaling threshold for Ab-mediated cell activation. At the same time, IgG influx into the brain could provide a cross linking ligand resulting in excessive microglia activation that is detrimental to neurons already under threat by misfolded protein
    corecore