12 research outputs found
Genetic Modifiers of Systemic Lupus Erythematosus in FcγRIIB−/− Mice
FcγRIIB is a potent lupus susceptibility gene as demonstrated by the observation that mice deficient in this molecule develop spontaneous antinuclear antibodies (ANA) and fatal glomerulonephritis when on the C57BL/6 background. To determine the mechanisms underlying the epistasis displayed by this gene we have constructed hybrids between FcγRIIB−/− and the systemic lupus erythematosus (SLE) modifiers yaa and lpr and the susceptibility locus Sle1. Sle1 and B6.RIIB−/− are both physically and functionally coupled; compound heterozygotes of Sle1 and B6.RIIB−/− develop significant disease, while single heterozygotes display no evidence of autoimmunity or disease, indicating that these genes lie on the same genetic pathway resulting in the loss of tolerance to nuclear antigens. However, the generation of ANA in itself is insufficient to account for the severity of autoimmune disease in this model, as demonstrated by analysis of yaa and lpr hybrids. Thus, B6.RIIB−/−/lpr mice are protected from disease progression, despite equivalent titers of ANA. In contrast, B6.RIIB−/−/yaa mice have significantly enhanced disease despite reduced ANA titers. Yaa modifies the specificity and thus the pathogenicity of the B6. RIIB−/− ANA, by converting them to antinucleolar antibodies. In addition to these known modifier pathways, we have discovered two novel, recessive loci contributed by the C57BL/6 genome that are required for the ANA phenotype, further indicating the epistatic properties of this SLE model
Human rDNA copy number is unstable in metastatic breast cancers
Chromatin-mediated silencing, including the formation of heterochromatin, silent chromosome territories, and repressed gene promoters, acts to stabilize patterns of gene regulation and the physical structure of the genome. Reduction of chromatin-mediated silencing can result in genome rearrangements, particularly at intrinsically unstable regions of the genome such as transposons, satellite repeats, and repetitive gene clusters including the rRNA gene clusters (rDNA). It is thus expected that mutational or environmental conditions that compromise heterochromatin function might cause genome instability, and diseases associated with decreased epigenetic stability might exhibit genome changes as part of their aetiology. We find the support of this hypothesis in invasive ductal breast carcinoma, in which reduced epigenetic silencing has been previously described, by using a facile method to quantify rDNA copy number in biopsied breast tumours and pair-matched healthy tissue. We found that rDNA and satellite DNA sequences had significant copy number variation - both losses and gains of copies - compared to healthy tissue, arguing that these genome rearrangements are common in developing breast cancer. Thus, any proposed aetiology onset or progression of breast cancer should consider alterations to the epigenome, but must also accommodate concomitant changes to genome sequence at heterochromatic loci.NIH [GM123640]12 month embargo; published online: 12 August 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe
Background Little is known about the incidence of severe critical events in children undergoing general anaesthesia in Europe. We aimed to identify the incidence, nature, and outcome of severe critical events in children undergoing anaesthesia, and the associated potential risk factors. Methods The APRICOT study was a prospective observational multicentre cohort study of children from birth to 15 years of age undergoing elective or urgent anaesthesia for diagnostic or surgical procedures. Children were eligible for inclusion during a 2-week period determined prospectively by each centre. There were 261 participating centres across 33 European countries. The primary endpoint was the occurence of perioperative severe critical events requiring immediate intervention. A severe critical event was defined as the occurrence of respiratory, cardiac, allergic, or neurological complications requiring immediate intervention and that led (or could have led) to major disability or death. This study is registered with ClinicalTrials.gov, number NCT01878760. Findings Between April 1, 2014, and Jan 31, 2015, 31 127 anaesthetic procedures in 30 874 children with a mean age of 6.35 years (SD 4.50) were included. The incidence of perioperative severe critical events was 5.2% (95% CI 5.0-5.5) with an incidence of respiratory critical events of 3.1% (2.9-3.3). Cardiovascular instability occurred in 1.9% (1.7-2.1), with an immediate poor outcome in 5.4% (3.7-7.5) of these cases. The all-cause 30-day in-hospital mortality rate was 10 in 10 000. This was independent of type of anaesthesia. Age (relative risk 0.88, 95% CI 0.86-0.90; p<0.0001), medical history, and physical condition (1.60, 1.40-1.82; p<0.0001) were the major risk factors for a serious critical event. Multivariate analysis revealed evidence for the beneficial effect of years of experience of the most senior anaesthesia team member (0.99, 0.981-0.997; p<0.0048 for respiratory critical events, and 0.98, 0.97-0.99; p=0.0039 for cardiovascular critical events), rather than the type of health institution or providers. Interpretation This study highlights a relatively high rate of severe critical events during the anaesthesia management of children for surgical or diagnostic procedures in Europe, and a large variability in the practice of paediatric anaesthesia. These findings are substantial enough to warrant attention from national, regional, and specialist societies to target education of anaesthesiologists and their teams and implement strategies for quality improvement in paediatric anaesthesia