138 research outputs found

    All-Optical Delay of Images using Slow Light

    Get PDF
    Two-dimensional images carried by optical pulses (2 ns) are delayed by up to 10 ns in a 10 cm cesium vapor cell. By interfering the delayed images with a local oscillator, the transverse phase and amplitude profiles of the images are shown to be preserved. It is further shown that delayed images can be well preserved even at very low light levels, where each pulse contains on average less than one photon.Comment: 4 pages, 5 figure

    Influence of relaxation on propagation, storage and retrieving of light pulses in electromagnetically induced transparency medium

    Full text link
    By solving the self-consistent system of Maxwell and density matrix equations to the first order with respect to nonadiabaticity, we obtain an analytical solution for the probe pulse propagation. The conditions for efficient storage of light are analyzed. The necessary conditions for optical propagation distance has been obtained.Comment: 7 pages, 7 figure

    Storage and perpendicular retrieving of two-dimensional pulses in electromagnetically induced transparency media

    Full text link
    Propagation of two dimensional pulses in electromagnetically induced tranparency media in the case of perpendicular storing and retrieving pulses has been analyzed. It has been shown that propagation control of the pulses in optically thick media can be used for producing interchange between pulse time-shape and intensity profile distribution. A simple obvious analytical solution for the retrieved new field has been obtained.Comment: 6 pages, 4 figure

    Quantum Communication and Computing With Atomic Ensembles Using Light-Shift Imbalance Induced Blockade

    Full text link
    Recently, we have shown that for conditions under which the so-called light-shift imbalance induced blockade (LSIIB) occurs, the collective excitation of an ensemble of a multi-level atom can be treated as a closed two level system. In this paper, we describe how such a system can be used as a quantum bit (qubit) for quantum communication and quantum computing. Specifically, we show how to realize a C-NOT gate using the collective qubit and an easily accessible ring cavity, via an extension of the so-called Pellizzari scheme. We also describe how multiple, small-scale quantum computers realized using these qubits can be linked effectively for implementing a quantum internet. We describe the details of the energy levels and transitions in 87Rb atom that could be used for implementing these schemes.Comment: 16 pages, 9 figures. Accepted in Phys. Rev.

    Magneto-optical rotation and cross-phase modulation via coherently driven tripod atoms

    Full text link
    We study the interaction of a weak probe field, having two orthogonally polarized components, with an optically dense medium of four-level atoms in a tripod configuration. In the presence of a coherent driving laser, electromagnetically induced transparency is attained in the medium, dramatically enhancing its linear as well as nonlinear dispersion while simultaneously suppressing the probe field absorption. We present the semiclassical and fully quantum analysis of the system. We propose an experimentally feasible setup that can induce large Faraday rotation of the probe field polarization and therefore be used for ultra-sensitive optical magnetometry. We then study the Kerr nonlinear coupling between the two components of the probe, demonstrating a novel regime of symmetric, extremely efficient cross-phase modulation, capable of fully entangling two single-photon pulses. This scheme may thus pave the way to photon-based quantum information applications, such as deterministic all-optical quantum computation, dense coding and teleportation.Comment: Corrected typo

    Ultraslow light in inhomogeneously broadened media

    Get PDF
    We calculate the characteristics of ultraslow light in an inhomogeneously broadened medium. We present analytical and numerical results for the group delay as a function of power of the propagating pulse. We apply these results to explain the recently reported saturation behavior [Baldit {\it et al.}, \prl {\bf 95}, 143601 (2005)] of ultraslow light in rare earth ion doped crystal.Comment: 4 pages, 5 figure

    Transverse localization and slow propagation of light

    Full text link
    The effect of finite control beam on the transverse spatial profile of the slow light propagation in an electromagnetically induced transparency medium is studied. We arrive at a general criterion in terms of eigenequation, and demonstrate the existence of a set of localized, stationary transverse modes for the negative detuning of the probe signal field. Each of these diffraction-free transverse modes has its own characteristic group velocity, smaller than the conventional theoretical result without considering the transverse spatial effect

    A high-efficiency quantum non-demolition single photon number resolving detector

    Full text link
    We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measurement with high efficiency (∌\sim99%) using less than 1600 atoms embedded in a dielectric waveguide.Comment: 4 pages, 4 figures. Significantly revised. More discussion on the potential experimental realisatio
    • 

    corecore